{"title":"一种用于基于迁移学习的工业故障诊断的新型混合信号分解技术","authors":"Zurana Mehrin Ruhi, Sigma Jahan, J. Uddin","doi":"10.33166/aetic.2021.04.004","DOIUrl":null,"url":null,"abstract":"In the fourth industrial revolution, data-driven intelligent fault diagnosis for industrial purposes serves a crucial role. In contemporary times, although deep learning is a popular approach for fault diagnosis, it requires massive amounts of labelled samples for training, which is arduous to come by in the real world. Our contribution to introduce a novel comprehensive intelligent fault detection model using the Case Western Reserve University dataset is divided into two steps. Firstly, a new hybrid signal decomposition methodology is developed comprising Empirical Mode Decomposition and Variational Mode Decomposition to leverage signal information from both processes for effective feature extraction. Secondly, transfer learning with DenseNet121 is employed to alleviate the constraints of deep learning models. Finally, our proposed novel technique surpassed not only previous outcomes but also generated state-of-the-art outcomes represented via the F1 score.","PeriodicalId":36440,"journal":{"name":"Annals of Emerging Technologies in Computing","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Hybrid Signal Decomposition Technique for Transfer Learning Based Industrial Fault Diagnosis\",\"authors\":\"Zurana Mehrin Ruhi, Sigma Jahan, J. Uddin\",\"doi\":\"10.33166/aetic.2021.04.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the fourth industrial revolution, data-driven intelligent fault diagnosis for industrial purposes serves a crucial role. In contemporary times, although deep learning is a popular approach for fault diagnosis, it requires massive amounts of labelled samples for training, which is arduous to come by in the real world. Our contribution to introduce a novel comprehensive intelligent fault detection model using the Case Western Reserve University dataset is divided into two steps. Firstly, a new hybrid signal decomposition methodology is developed comprising Empirical Mode Decomposition and Variational Mode Decomposition to leverage signal information from both processes for effective feature extraction. Secondly, transfer learning with DenseNet121 is employed to alleviate the constraints of deep learning models. Finally, our proposed novel technique surpassed not only previous outcomes but also generated state-of-the-art outcomes represented via the F1 score.\",\"PeriodicalId\":36440,\"journal\":{\"name\":\"Annals of Emerging Technologies in Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Emerging Technologies in Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33166/aetic.2021.04.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Emerging Technologies in Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33166/aetic.2021.04.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
A Novel Hybrid Signal Decomposition Technique for Transfer Learning Based Industrial Fault Diagnosis
In the fourth industrial revolution, data-driven intelligent fault diagnosis for industrial purposes serves a crucial role. In contemporary times, although deep learning is a popular approach for fault diagnosis, it requires massive amounts of labelled samples for training, which is arduous to come by in the real world. Our contribution to introduce a novel comprehensive intelligent fault detection model using the Case Western Reserve University dataset is divided into two steps. Firstly, a new hybrid signal decomposition methodology is developed comprising Empirical Mode Decomposition and Variational Mode Decomposition to leverage signal information from both processes for effective feature extraction. Secondly, transfer learning with DenseNet121 is employed to alleviate the constraints of deep learning models. Finally, our proposed novel technique surpassed not only previous outcomes but also generated state-of-the-art outcomes represented via the F1 score.