{"title":"合成纳米羟基磷灰石用于牙釉质修复的原位电位","authors":"InceS Gokce, Banu ErmisR","doi":"10.1680/JBIBN.21.00022","DOIUrl":null,"url":null,"abstract":"This study was designed to evaluate whether nano-hydroxyapatite toothpastes with or without fluoride would be more advantageous than a fluoride toothpaste in the repair of eroded enamel in situ. Tw...","PeriodicalId":48847,"journal":{"name":"Bioinspired Biomimetic and Nanobiomaterials","volume":"1 1","pages":"1-9"},"PeriodicalIF":1.3000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The in situ potential of synthetic nano-hydroxyapatite for tooth enamel repair\",\"authors\":\"InceS Gokce, Banu ErmisR\",\"doi\":\"10.1680/JBIBN.21.00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study was designed to evaluate whether nano-hydroxyapatite toothpastes with or without fluoride would be more advantageous than a fluoride toothpaste in the repair of eroded enamel in situ. Tw...\",\"PeriodicalId\":48847,\"journal\":{\"name\":\"Bioinspired Biomimetic and Nanobiomaterials\",\"volume\":\"1 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspired Biomimetic and Nanobiomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/JBIBN.21.00022\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspired Biomimetic and Nanobiomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/JBIBN.21.00022","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
The in situ potential of synthetic nano-hydroxyapatite for tooth enamel repair
This study was designed to evaluate whether nano-hydroxyapatite toothpastes with or without fluoride would be more advantageous than a fluoride toothpaste in the repair of eroded enamel in situ. Tw...
期刊介绍:
Bioinspired, biomimetic and nanobiomaterials are emerging as the most promising area of research within the area of biological materials science and engineering. The technological significance of this area is immense for applications as diverse as tissue engineering and drug delivery biosystems to biomimicked sensors and optical devices.
Bioinspired, Biomimetic and Nanobiomaterials provides a unique scholarly forum for discussion and reporting of structure sensitive functional properties of nature inspired materials.