素数特征有限剩余域的多项式Dedekind域

IF 0.7 3区 数学 Q2 MATHEMATICS
G. Peruginelli
{"title":"素数特征有限剩余域的多项式Dedekind域","authors":"G. Peruginelli","doi":"10.2140/pjm.2023.324.333","DOIUrl":null,"url":null,"abstract":"We show that every Dedekind domain $R$ lying between the polynomial rings $\\mathbb Z[X]$ and $\\mathbb Q[X]$ with the property that its residue fields of prime characteristic are finite fields is equal to a generalized ring of integer-valued polynomials, that is, for each prime $p\\in\\mathbb Z$ there exists a finite subset $E_p$ of transcendental elements over $\\mathbb Q$ in the absolute integral closure $\\overline{\\mathbb Z_p}$ of the ring of $p$-adic integers such that $R=\\{f\\in\\mathbb Q[X]\\mid f(E_p)\\subseteq \\overline{\\mathbb Z_p}, \\forall \\text{ prime }p\\in\\mathbb Z\\}$. Moreover, we prove that the class group of $R$ is isomorphic to a direct sum of a countable family of finitely generated abelian groups. Conversely, any group of this kind is the class group of a Dedekind domain $R$ between $\\mathbb Z[X]$ and $\\mathbb Q[X]$.","PeriodicalId":54651,"journal":{"name":"Pacific Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Polynomial Dedekind domains with finite residue fields of prime characteristic\",\"authors\":\"G. Peruginelli\",\"doi\":\"10.2140/pjm.2023.324.333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that every Dedekind domain $R$ lying between the polynomial rings $\\\\mathbb Z[X]$ and $\\\\mathbb Q[X]$ with the property that its residue fields of prime characteristic are finite fields is equal to a generalized ring of integer-valued polynomials, that is, for each prime $p\\\\in\\\\mathbb Z$ there exists a finite subset $E_p$ of transcendental elements over $\\\\mathbb Q$ in the absolute integral closure $\\\\overline{\\\\mathbb Z_p}$ of the ring of $p$-adic integers such that $R=\\\\{f\\\\in\\\\mathbb Q[X]\\\\mid f(E_p)\\\\subseteq \\\\overline{\\\\mathbb Z_p}, \\\\forall \\\\text{ prime }p\\\\in\\\\mathbb Z\\\\}$. Moreover, we prove that the class group of $R$ is isomorphic to a direct sum of a countable family of finitely generated abelian groups. Conversely, any group of this kind is the class group of a Dedekind domain $R$ between $\\\\mathbb Z[X]$ and $\\\\mathbb Q[X]$.\",\"PeriodicalId\":54651,\"journal\":{\"name\":\"Pacific Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2023.324.333\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2023.324.333","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们证明了每一个Dedekind定义域 $R$ 在多项式环之间 $\mathbb Z[X]$ 和 $\mathbb Q[X]$ 其素数特征的剩余域是有限域的性质等于一个整数多项式的广义环,即对于每一个素数都是如此 $p\in\mathbb Z$ 存在一个有限子集 $E_p$ 超越的元素 $\mathbb Q$ 在绝对积分闭包中 $\overline{\mathbb Z_p}$ 的环 $p$-adic整数,使得 $R=\{f\in\mathbb Q[X]\mid f(E_p)\subseteq \overline{\mathbb Z_p}, \forall \text{ prime }p\in\mathbb Z\}$. 的类群 $R$ 同构于有限生成阿贝尔群的可数族的直接和。反过来说,这种类型的任何组都是Dedekind域的类组 $R$ 在 $\mathbb Z[X]$ 和 $\mathbb Q[X]$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polynomial Dedekind domains with finite residue fields of prime characteristic
We show that every Dedekind domain $R$ lying between the polynomial rings $\mathbb Z[X]$ and $\mathbb Q[X]$ with the property that its residue fields of prime characteristic are finite fields is equal to a generalized ring of integer-valued polynomials, that is, for each prime $p\in\mathbb Z$ there exists a finite subset $E_p$ of transcendental elements over $\mathbb Q$ in the absolute integral closure $\overline{\mathbb Z_p}$ of the ring of $p$-adic integers such that $R=\{f\in\mathbb Q[X]\mid f(E_p)\subseteq \overline{\mathbb Z_p}, \forall \text{ prime }p\in\mathbb Z\}$. Moreover, we prove that the class group of $R$ is isomorphic to a direct sum of a countable family of finitely generated abelian groups. Conversely, any group of this kind is the class group of a Dedekind domain $R$ between $\mathbb Z[X]$ and $\mathbb Q[X]$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
93
审稿时长
4-8 weeks
期刊介绍: Founded in 1951, PJM has published mathematics research for more than 60 years. PJM is run by mathematicians from the Pacific Rim. PJM aims to publish high-quality articles in all branches of mathematics, at low cost to libraries and individuals. The Pacific Journal of Mathematics is incorporated as a 501(c)(3) California nonprofit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信