AlFeCoNiMo0.2高熵合金加工图中流动不稳定性判据的比较研究

IF 1.2 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jianlin Li, Jinke Han, Fance Song, Haoyu Zhang, Ge Zhou, Lijia Chen, Xue Cao
{"title":"AlFeCoNiMo0.2高熵合金加工图中流动不稳定性判据的比较研究","authors":"Jianlin Li, Jinke Han, Fance Song, Haoyu Zhang, Ge Zhou, Lijia Chen, Xue Cao","doi":"10.1080/09500839.2022.2129109","DOIUrl":null,"url":null,"abstract":"ABSTRACT High-entropy alloys (HEAs) were studied via hot compression experiments using a Gleeble-3800 thermal simulation tester. The hot deformation behaviour of an AlFeCoNiMo0.2 HEA and the physical significance of the associated parameters were analyzed according to the Prasad, Gegel, Malas, and Murty instability criteria. Processing maps of different instability criteria under different conditions were constructed. The domain corresponding to a temperature range of 1070°C–1150°C with a strain rate range of 0.001–0.1 s−1 and average power dissipation rates of >40% did not feature flow instability; thus, this domain is appropriate for the AlFeCoNiMo0.2 HEA deformation process. Through microstructure analysis, it was determined that the deformation mechanism in the optimal forming region is dynamic recrystallization.","PeriodicalId":19860,"journal":{"name":"Philosophical Magazine Letters","volume":"102 1","pages":"348 - 358"},"PeriodicalIF":1.2000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A comparative study of flow instability criteria in the processing map of AlFeCoNiMo0.2 high-entropy alloys\",\"authors\":\"Jianlin Li, Jinke Han, Fance Song, Haoyu Zhang, Ge Zhou, Lijia Chen, Xue Cao\",\"doi\":\"10.1080/09500839.2022.2129109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT High-entropy alloys (HEAs) were studied via hot compression experiments using a Gleeble-3800 thermal simulation tester. The hot deformation behaviour of an AlFeCoNiMo0.2 HEA and the physical significance of the associated parameters were analyzed according to the Prasad, Gegel, Malas, and Murty instability criteria. Processing maps of different instability criteria under different conditions were constructed. The domain corresponding to a temperature range of 1070°C–1150°C with a strain rate range of 0.001–0.1 s−1 and average power dissipation rates of >40% did not feature flow instability; thus, this domain is appropriate for the AlFeCoNiMo0.2 HEA deformation process. Through microstructure analysis, it was determined that the deformation mechanism in the optimal forming region is dynamic recrystallization.\",\"PeriodicalId\":19860,\"journal\":{\"name\":\"Philosophical Magazine Letters\",\"volume\":\"102 1\",\"pages\":\"348 - 358\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Magazine Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09500839.2022.2129109\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09500839.2022.2129109","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

摘要采用Gleeble-3800热模拟试验机对高熵合金进行了热压缩实验研究。根据Prasad、Gegel、Malas和Murty不稳定性标准,分析了AlFeCoNiMo0.2 HEA的热变形行为和相关参数的物理意义。构建了不同条件下不同失稳标准的处理图。温度范围为1070°C–1150°C,应变速率范围为0.001–0.1的区域 s−1和>40%的平均功率耗散率不具有流动不稳定性;因此,该畴适用于AlFeCoNiMo0.2 HEA变形过程。通过微观组织分析,确定最佳成形区的变形机制为动态再结晶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative study of flow instability criteria in the processing map of AlFeCoNiMo0.2 high-entropy alloys
ABSTRACT High-entropy alloys (HEAs) were studied via hot compression experiments using a Gleeble-3800 thermal simulation tester. The hot deformation behaviour of an AlFeCoNiMo0.2 HEA and the physical significance of the associated parameters were analyzed according to the Prasad, Gegel, Malas, and Murty instability criteria. Processing maps of different instability criteria under different conditions were constructed. The domain corresponding to a temperature range of 1070°C–1150°C with a strain rate range of 0.001–0.1 s−1 and average power dissipation rates of >40% did not feature flow instability; thus, this domain is appropriate for the AlFeCoNiMo0.2 HEA deformation process. Through microstructure analysis, it was determined that the deformation mechanism in the optimal forming region is dynamic recrystallization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Philosophical Magazine Letters
Philosophical Magazine Letters 物理-物理:凝聚态物理
CiteScore
2.60
自引率
0.00%
发文量
25
审稿时长
2.7 months
期刊介绍: Philosophical Magazine Letters is the rapid communications part of the highly respected Philosophical Magazine, which was first published in 1798. Its Editors consider for publication short and timely contributions in the field of condensed matter describing original results, theories and concepts relating to the structure and properties of crystalline materials, ceramics, polymers, glasses, amorphous films, composites and soft matter. Articles emphasizing experimental, theoretical and modelling studies on solids, especially those that interpret behaviour on a microscopic, atomic or electronic scale, are particularly appropriate. Manuscripts are considered on the strict condition that they have been submitted only to Philosophical Magazine Letters , that they have not been published already, and that they are not under consideration for publication elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信