Ruiqiang Yang, W. Ding, Zhan Zhao, Jingtao Liu, Shuo Shi, Teng Zhao, Peng Han
{"title":"以高地应力为主要控制因素的超深高压钻井工程井眼轨迹优化——以塔里木盆地顺北地区奥陶系碳酸盐岩储层为例","authors":"Ruiqiang Yang, W. Ding, Zhan Zhao, Jingtao Liu, Shuo Shi, Teng Zhao, Peng Han","doi":"10.1190/int-2022-0058.1","DOIUrl":null,"url":null,"abstract":"With increasing oil and gas exploration and development, well trajectory optimization has gradually become the focus of the oil and gas industry. Considering the wellbore instability in the Shunbei area of the Tarim Basin, the well trajectory was scientifically optimized under the guidance of rock mechanics, drilling engineering, and mathematical methods, combined with actual geologic data, and with in situ stress as the main controlling factor. In this paper, the stress state of the wellbore is analyzed by linear elastic theory to establish the stress distribution model of the wellbore. The safety window model of wellbore stability is established using different rock failure criteria to calculate the collapse pressure and fracture pressure of the formation. Based on this, the safe mud density window is defined to achieve wellbore trajectory optimization. Finally, the influence factors of wellbore stability are discussed, and the applicability of different rock failure criteria is evaluated. The results indicate that under the normal faulting stress regime condition in the study area, the direction of horizontal minimum principal stress is the best drilling direction, where the borehole inclination angle of α > 50° is the optimal well trajectory. The wellbore stabilities of high-angle deviated wells and horizontal wells are better than those of low-angle deviated wells and vertical wells. The calculation results of the Mogi-Coulomb criterion can describe the conditions of the in situ stress field more accurately. The safe windows for different well trajectories are obtained directly by the numerical method, which is very practical for optimizing well trajectories and improving wellbore stability.","PeriodicalId":51318,"journal":{"name":"Interpretation-A Journal of Subsurface Characterization","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Well trajectory optimization of ultra-deep and high-pressure drilling engineering based on high in-situ stress as the main control factor: a case study from the Ordovician carbonated reservoir in Shunbei area of Tarim basin\",\"authors\":\"Ruiqiang Yang, W. Ding, Zhan Zhao, Jingtao Liu, Shuo Shi, Teng Zhao, Peng Han\",\"doi\":\"10.1190/int-2022-0058.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With increasing oil and gas exploration and development, well trajectory optimization has gradually become the focus of the oil and gas industry. Considering the wellbore instability in the Shunbei area of the Tarim Basin, the well trajectory was scientifically optimized under the guidance of rock mechanics, drilling engineering, and mathematical methods, combined with actual geologic data, and with in situ stress as the main controlling factor. In this paper, the stress state of the wellbore is analyzed by linear elastic theory to establish the stress distribution model of the wellbore. The safety window model of wellbore stability is established using different rock failure criteria to calculate the collapse pressure and fracture pressure of the formation. Based on this, the safe mud density window is defined to achieve wellbore trajectory optimization. Finally, the influence factors of wellbore stability are discussed, and the applicability of different rock failure criteria is evaluated. The results indicate that under the normal faulting stress regime condition in the study area, the direction of horizontal minimum principal stress is the best drilling direction, where the borehole inclination angle of α > 50° is the optimal well trajectory. The wellbore stabilities of high-angle deviated wells and horizontal wells are better than those of low-angle deviated wells and vertical wells. The calculation results of the Mogi-Coulomb criterion can describe the conditions of the in situ stress field more accurately. The safe windows for different well trajectories are obtained directly by the numerical method, which is very practical for optimizing well trajectories and improving wellbore stability.\",\"PeriodicalId\":51318,\"journal\":{\"name\":\"Interpretation-A Journal of Subsurface Characterization\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interpretation-A Journal of Subsurface Characterization\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1190/int-2022-0058.1\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interpretation-A Journal of Subsurface Characterization","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1190/int-2022-0058.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Well trajectory optimization of ultra-deep and high-pressure drilling engineering based on high in-situ stress as the main control factor: a case study from the Ordovician carbonated reservoir in Shunbei area of Tarim basin
With increasing oil and gas exploration and development, well trajectory optimization has gradually become the focus of the oil and gas industry. Considering the wellbore instability in the Shunbei area of the Tarim Basin, the well trajectory was scientifically optimized under the guidance of rock mechanics, drilling engineering, and mathematical methods, combined with actual geologic data, and with in situ stress as the main controlling factor. In this paper, the stress state of the wellbore is analyzed by linear elastic theory to establish the stress distribution model of the wellbore. The safety window model of wellbore stability is established using different rock failure criteria to calculate the collapse pressure and fracture pressure of the formation. Based on this, the safe mud density window is defined to achieve wellbore trajectory optimization. Finally, the influence factors of wellbore stability are discussed, and the applicability of different rock failure criteria is evaluated. The results indicate that under the normal faulting stress regime condition in the study area, the direction of horizontal minimum principal stress is the best drilling direction, where the borehole inclination angle of α > 50° is the optimal well trajectory. The wellbore stabilities of high-angle deviated wells and horizontal wells are better than those of low-angle deviated wells and vertical wells. The calculation results of the Mogi-Coulomb criterion can describe the conditions of the in situ stress field more accurately. The safe windows for different well trajectories are obtained directly by the numerical method, which is very practical for optimizing well trajectories and improving wellbore stability.
期刊介绍:
***Jointly published by the American Association of Petroleum Geologists (AAPG) and the Society of Exploration Geophysicists (SEG)***
Interpretation is a new, peer-reviewed journal for advancing the practice of subsurface interpretation.