弱Morrey空间上的点乘子

IF 0.9 3区 数学 Q2 MATHEMATICS
Ryota Kawasumi, E. Nakai
{"title":"弱Morrey空间上的点乘子","authors":"Ryota Kawasumi, E. Nakai","doi":"10.1515/AGMS-2020-0119","DOIUrl":null,"url":null,"abstract":"Abstract We consider generalized weak Morrey spaces with variable growth condition on spaces of homogeneous type and characterize the pointwise multipliers from a generalized weak Morrey space to another one. The set of all pointwise multipliers from a weak Lebesgue space to another one is also a weak Lebesgue space. However, we point out that the weak Morrey spaces do not always have this property just as the Morrey spaces not always.","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"8 1","pages":"363 - 381"},"PeriodicalIF":0.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/AGMS-2020-0119","citationCount":"5","resultStr":"{\"title\":\"Pointwise Multipliers on Weak Morrey Spaces\",\"authors\":\"Ryota Kawasumi, E. Nakai\",\"doi\":\"10.1515/AGMS-2020-0119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider generalized weak Morrey spaces with variable growth condition on spaces of homogeneous type and characterize the pointwise multipliers from a generalized weak Morrey space to another one. The set of all pointwise multipliers from a weak Lebesgue space to another one is also a weak Lebesgue space. However, we point out that the weak Morrey spaces do not always have this property just as the Morrey spaces not always.\",\"PeriodicalId\":48637,\"journal\":{\"name\":\"Analysis and Geometry in Metric Spaces\",\"volume\":\"8 1\",\"pages\":\"363 - 381\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/AGMS-2020-0119\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Geometry in Metric Spaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/AGMS-2020-0119\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/AGMS-2020-0119","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

摘要我们考虑齐次型空间上具有变增长条件的广义弱Morrey空间,并刻画了广义弱Morry空间到另一个广义弱Morray空间的点乘子。从弱勒贝格空间到另一个勒贝格空间的所有点乘子的集合也是弱勒贝格空。然而,我们指出,弱Morrey空间并不总是具有这种性质,就像Morrey空间不总是一样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pointwise Multipliers on Weak Morrey Spaces
Abstract We consider generalized weak Morrey spaces with variable growth condition on spaces of homogeneous type and characterize the pointwise multipliers from a generalized weak Morrey space to another one. The set of all pointwise multipliers from a weak Lebesgue space to another one is also a weak Lebesgue space. However, we point out that the weak Morrey spaces do not always have this property just as the Morrey spaces not always.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Geometry in Metric Spaces
Analysis and Geometry in Metric Spaces Mathematics-Geometry and Topology
CiteScore
1.80
自引率
0.00%
发文量
8
审稿时长
16 weeks
期刊介绍: Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed. AGMS is devoted to the publication of results on these and related topics: Geometric inequalities in metric spaces, Geometric measure theory and variational problems in metric spaces, Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density, Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds. Geometric control theory, Curvature in metric and length spaces, Geometric group theory, Harmonic Analysis. Potential theory, Mass transportation problems, Quasiconformal and quasiregular mappings. Quasiconformal geometry, PDEs associated to analytic and geometric problems in metric spaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信