应用深度神经网络检测阿尔茨海默病的脑成像研究

G. Battineni, M. A. Hossain, N. Chintalapudi, G. Nittari, Ciro Ruocco, E. Traini, Francesco Amenta
{"title":"应用深度神经网络检测阿尔茨海默病的脑成像研究","authors":"G. Battineni, M. A. Hossain, N. Chintalapudi, G. Nittari, Ciro Ruocco, E. Traini, Francesco Amenta","doi":"10.21926/obm.geriatr.2301220","DOIUrl":null,"url":null,"abstract":"The increasing incidence of adult-onset dementia disorders and primarily Alzheimer’s disease (AD) among the aging population around the world is increasing the social and economic burden on society and healthcare systems. This paper presents three neural networking algorithms: MobileNet, Artificial Neural Networks (ANN), and DenseNet for AD classification based on MRI imaging data. The results of each model were compared in terms of performance metrics such as accuracy, true positive rate, and receiver operating curve values. Results mentioned that MNet classified AD progression with 95.41% of accuracy. Early detection and appropriate interventions, primarily on modifiable risk factors of AD, can delay the progression of cognitive impairment and other symptoms that represent a main trait of the disease.","PeriodicalId":74332,"journal":{"name":"OBM geriatrics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain Imaging Studies Using Deep Neural Networks in the Detection of Alzheimer's Disease\",\"authors\":\"G. Battineni, M. A. Hossain, N. Chintalapudi, G. Nittari, Ciro Ruocco, E. Traini, Francesco Amenta\",\"doi\":\"10.21926/obm.geriatr.2301220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing incidence of adult-onset dementia disorders and primarily Alzheimer’s disease (AD) among the aging population around the world is increasing the social and economic burden on society and healthcare systems. This paper presents three neural networking algorithms: MobileNet, Artificial Neural Networks (ANN), and DenseNet for AD classification based on MRI imaging data. The results of each model were compared in terms of performance metrics such as accuracy, true positive rate, and receiver operating curve values. Results mentioned that MNet classified AD progression with 95.41% of accuracy. Early detection and appropriate interventions, primarily on modifiable risk factors of AD, can delay the progression of cognitive impairment and other symptoms that represent a main trait of the disease.\",\"PeriodicalId\":74332,\"journal\":{\"name\":\"OBM geriatrics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OBM geriatrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21926/obm.geriatr.2301220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OBM geriatrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/obm.geriatr.2301220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在世界各地的老龄化人口中,成人痴呆症(主要是阿尔茨海默病)的发病率不断增加,这增加了社会和医疗系统的社会和经济负担。本文提出了三种基于MRI成像数据的AD分类神经网络算法:MobileNet、人工神经网络(ANN)和DenseNet。根据性能指标(如准确性、真阳性率和受试者工作曲线值)对每个模型的结果进行比较。结果表明,MNet对AD进展进行分类的准确率为95.41%。早期发现和适当的干预措施,主要是针对AD的可改变风险因素,可以延缓认知障碍和其他代表疾病主要特征的症状的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brain Imaging Studies Using Deep Neural Networks in the Detection of Alzheimer's Disease
The increasing incidence of adult-onset dementia disorders and primarily Alzheimer’s disease (AD) among the aging population around the world is increasing the social and economic burden on society and healthcare systems. This paper presents three neural networking algorithms: MobileNet, Artificial Neural Networks (ANN), and DenseNet for AD classification based on MRI imaging data. The results of each model were compared in terms of performance metrics such as accuracy, true positive rate, and receiver operating curve values. Results mentioned that MNet classified AD progression with 95.41% of accuracy. Early detection and appropriate interventions, primarily on modifiable risk factors of AD, can delay the progression of cognitive impairment and other symptoms that represent a main trait of the disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信