{"title":"流体动力斜垫推力滑动轴承的多尺度建模与仿真","authors":"Chen Huang, Yongbin Zhang","doi":"10.1142/s1756973722500056","DOIUrl":null,"url":null,"abstract":"Numerical calculations were made for the multiscale hydrodynamic inclined fixed pad thrust slider bearing where the nanoscale non-continuum adsorbed layer flow and the intermediate continuum fluid flow simultaneously occur. They were compared with the results calculated from the analytically derived pressure formulas in the earlier study for the same bearing, which are essentially approximate. It was found that when the surface separation on the exit of the bearing is no less than 13[Formula: see text]nm, the analytically derived pressure formulas are valid for the studied multiscale hydrodynamic bearing for the weak, medium and strong fluid-bearing surface interactions; otherwise, the numerical approach is mandatory for calculating the hydrodynamic pressures in the bearing.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale Modeling and Simulation of Hydrodynamic Inclined Fixed Pad Thrust Slider Bearing\",\"authors\":\"Chen Huang, Yongbin Zhang\",\"doi\":\"10.1142/s1756973722500056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerical calculations were made for the multiscale hydrodynamic inclined fixed pad thrust slider bearing where the nanoscale non-continuum adsorbed layer flow and the intermediate continuum fluid flow simultaneously occur. They were compared with the results calculated from the analytically derived pressure formulas in the earlier study for the same bearing, which are essentially approximate. It was found that when the surface separation on the exit of the bearing is no less than 13[Formula: see text]nm, the analytically derived pressure formulas are valid for the studied multiscale hydrodynamic bearing for the weak, medium and strong fluid-bearing surface interactions; otherwise, the numerical approach is mandatory for calculating the hydrodynamic pressures in the bearing.\",\"PeriodicalId\":43242,\"journal\":{\"name\":\"Journal of Multiscale Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multiscale Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1756973722500056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multiscale Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1756973722500056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Multiscale Modeling and Simulation of Hydrodynamic Inclined Fixed Pad Thrust Slider Bearing
Numerical calculations were made for the multiscale hydrodynamic inclined fixed pad thrust slider bearing where the nanoscale non-continuum adsorbed layer flow and the intermediate continuum fluid flow simultaneously occur. They were compared with the results calculated from the analytically derived pressure formulas in the earlier study for the same bearing, which are essentially approximate. It was found that when the surface separation on the exit of the bearing is no less than 13[Formula: see text]nm, the analytically derived pressure formulas are valid for the studied multiscale hydrodynamic bearing for the weak, medium and strong fluid-bearing surface interactions; otherwise, the numerical approach is mandatory for calculating the hydrodynamic pressures in the bearing.