{"title":"Copulas、稳定的尾部依赖函数和多元单调性","authors":"P. Ressel","doi":"10.1515/demo-2019-0013","DOIUrl":null,"url":null,"abstract":"Abstract For functions of several variables there exist many notions of monotonicity, three of them being characteristic for resp. distribution, survival and co-survival functions. In each case the “degree” of monotonicity is just the basic one of a whole scale. Copulas are special distribution functions, and stable tail dependence functions are special co-survival functions. It will turn out that for both classes the basic degree of monotonicity is the only one possible, apart from the (trivial) independence functions. As a consequence a “nesting” of such functions depends on particular circumstances. For nested Archimedean copulas the rather restrictive conditions known so far are considerably weakened.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"7 1","pages":"247 - 258"},"PeriodicalIF":0.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/demo-2019-0013","citationCount":"8","resultStr":"{\"title\":\"Copulas, stable tail dependence functions, and multivariate monotonicity\",\"authors\":\"P. Ressel\",\"doi\":\"10.1515/demo-2019-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For functions of several variables there exist many notions of monotonicity, three of them being characteristic for resp. distribution, survival and co-survival functions. In each case the “degree” of monotonicity is just the basic one of a whole scale. Copulas are special distribution functions, and stable tail dependence functions are special co-survival functions. It will turn out that for both classes the basic degree of monotonicity is the only one possible, apart from the (trivial) independence functions. As a consequence a “nesting” of such functions depends on particular circumstances. For nested Archimedean copulas the rather restrictive conditions known so far are considerably weakened.\",\"PeriodicalId\":43690,\"journal\":{\"name\":\"Dependence Modeling\",\"volume\":\"7 1\",\"pages\":\"247 - 258\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/demo-2019-0013\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dependence Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/demo-2019-0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2019-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Copulas, stable tail dependence functions, and multivariate monotonicity
Abstract For functions of several variables there exist many notions of monotonicity, three of them being characteristic for resp. distribution, survival and co-survival functions. In each case the “degree” of monotonicity is just the basic one of a whole scale. Copulas are special distribution functions, and stable tail dependence functions are special co-survival functions. It will turn out that for both classes the basic degree of monotonicity is the only one possible, apart from the (trivial) independence functions. As a consequence a “nesting” of such functions depends on particular circumstances. For nested Archimedean copulas the rather restrictive conditions known so far are considerably weakened.
期刊介绍:
The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to): -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations