标记有序树中的最深节点

IF 0.4 Q4 MATHEMATICS
H. Prodinger
{"title":"标记有序树中的最深节点","authors":"H. Prodinger","doi":"10.2478/amsil-2022-0015","DOIUrl":null,"url":null,"abstract":"Abstract A variation of ordered trees, where each rightmost edge might be marked or not, if it does not lead to an endnode, is investigated. These marked ordered trees were introduced by E. Deutsch et al. to model skew Dyck paths. We study the number of deepest nodes in such trees. Explicit generating functions are established and the average number of deepest nodes, which approaches 53 {5 \\over 3} when the number of nodes gets large. This is to be compared to standard ordered trees where the average number of deepest nodes approaches 2.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"36 1","pages":"215 - 227"},"PeriodicalIF":0.4000,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deepest Nodes in Marked Ordered Trees\",\"authors\":\"H. Prodinger\",\"doi\":\"10.2478/amsil-2022-0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A variation of ordered trees, where each rightmost edge might be marked or not, if it does not lead to an endnode, is investigated. These marked ordered trees were introduced by E. Deutsch et al. to model skew Dyck paths. We study the number of deepest nodes in such trees. Explicit generating functions are established and the average number of deepest nodes, which approaches 53 {5 \\\\over 3} when the number of nodes gets large. This is to be compared to standard ordered trees where the average number of deepest nodes approaches 2.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"36 1\",\"pages\":\"215 - 227\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2022-0015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2022-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要研究了有序树的一种变体,其中每个最右边的边都可能被标记或不被标记,如果它不导致端节点的话。这些有标记的有序树是由E.Deutsch等人引入的,用于对偏斜的Dyck路径进行建模。我们研究了这些树中最深节点的数量。建立了显式生成函数,当节点数量变大时,最深节点的平均数量接近53{5\超过3}。这将与最深节点的平均数量接近2的标准有序树进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deepest Nodes in Marked Ordered Trees
Abstract A variation of ordered trees, where each rightmost edge might be marked or not, if it does not lead to an endnode, is investigated. These marked ordered trees were introduced by E. Deutsch et al. to model skew Dyck paths. We study the number of deepest nodes in such trees. Explicit generating functions are established and the average number of deepest nodes, which approaches 53 {5 \over 3} when the number of nodes gets large. This is to be compared to standard ordered trees where the average number of deepest nodes approaches 2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信