FPGA中优先级队列结构的效率

IF 1.6 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
L. Kohútka
{"title":"FPGA中优先级队列结构的效率","authors":"L. Kohútka","doi":"10.3390/jlpea12030039","DOIUrl":null,"url":null,"abstract":"This paper presents a novel SRAM-based architecture of a data structure that represents a set of multiple priority queues that can be implemented in FPGA or ASIC. The proposed architecture is based on shift registers, systolic arrays and SRAM memories. Such architecture, called MultiQueue, is optimized for minimum chip area costs, which leads to lower energy consumption too. The MultiQueue architecture has constant time complexity, constant critical path length and constant latency. Therefore, it is highly predictable and very suitable for real-time systems too. The proposed architecture was verified using a simplified version of UVM and applying millions of instructions with randomly generated input values. Achieved FPGA synthesis results are presented and discussed. These results show significant savings in FPGA Look-Up Tables consumption in comparison to existing solutions. More than 63% of Look-Up Tables can be saved using the MultiQueue architecture instead of the existing priority queues.","PeriodicalId":38100,"journal":{"name":"Journal of Low Power Electronics and Applications","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Efficiency of Priority Queue Architectures in FPGA\",\"authors\":\"L. Kohútka\",\"doi\":\"10.3390/jlpea12030039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel SRAM-based architecture of a data structure that represents a set of multiple priority queues that can be implemented in FPGA or ASIC. The proposed architecture is based on shift registers, systolic arrays and SRAM memories. Such architecture, called MultiQueue, is optimized for minimum chip area costs, which leads to lower energy consumption too. The MultiQueue architecture has constant time complexity, constant critical path length and constant latency. Therefore, it is highly predictable and very suitable for real-time systems too. The proposed architecture was verified using a simplified version of UVM and applying millions of instructions with randomly generated input values. Achieved FPGA synthesis results are presented and discussed. These results show significant savings in FPGA Look-Up Tables consumption in comparison to existing solutions. More than 63% of Look-Up Tables can be saved using the MultiQueue architecture instead of the existing priority queues.\",\"PeriodicalId\":38100,\"journal\":{\"name\":\"Journal of Low Power Electronics and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Low Power Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jlpea12030039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Power Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jlpea12030039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的基于SRAM的数据结构架构,该架构表示一组可以在FPGA或ASIC中实现的多优先级队列。所提出的体系结构基于移位寄存器、收缩阵列和SRAM存储器。这种被称为“多队列”的架构针对最小的芯片面积成本进行了优化,这也降低了能耗。多队列体系结构具有恒定的时间复杂性、恒定的关键路径长度和恒定的延迟。因此,它具有高度的可预测性,也非常适合实时系统。所提出的体系结构使用简化版本的UVM进行了验证,并应用了数百万条具有随机生成输入值的指令。给出并讨论了所实现的FPGA综合结果。这些结果表明,与现有解决方案相比,FPGA查找表的消耗显著节省。使用MultiQueue体系结构而不是现有的优先级队列,可以保存63%以上的查找表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficiency of Priority Queue Architectures in FPGA
This paper presents a novel SRAM-based architecture of a data structure that represents a set of multiple priority queues that can be implemented in FPGA or ASIC. The proposed architecture is based on shift registers, systolic arrays and SRAM memories. Such architecture, called MultiQueue, is optimized for minimum chip area costs, which leads to lower energy consumption too. The MultiQueue architecture has constant time complexity, constant critical path length and constant latency. Therefore, it is highly predictable and very suitable for real-time systems too. The proposed architecture was verified using a simplified version of UVM and applying millions of instructions with randomly generated input values. Achieved FPGA synthesis results are presented and discussed. These results show significant savings in FPGA Look-Up Tables consumption in comparison to existing solutions. More than 63% of Look-Up Tables can be saved using the MultiQueue architecture instead of the existing priority queues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Low Power Electronics and Applications
Journal of Low Power Electronics and Applications Engineering-Electrical and Electronic Engineering
CiteScore
3.60
自引率
14.30%
发文量
57
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信