神经尖峰序列是决定性的混沌过程还是随机过程?

Origins Pub Date : 2018-10-24 DOI:10.4324/9781315789347-17
M. Xie, K. Pribram, Joseph S. King
{"title":"神经尖峰序列是决定性的混沌过程还是随机过程?","authors":"M. Xie, K. Pribram, Joseph S. King","doi":"10.4324/9781315789347-17","DOIUrl":null,"url":null,"abstract":"Before examining neural interspike intervals to see how they might encode information, an essential question that has first to be answered is whether, under the unstimulated condition, the apparent randomness of the neural firing paltern renects deterministic chaos or a stochastic process. Here, we use short term predictability and the structure of the prediction residual to determine the dynamic characteristics of interspike intervals. As demonstrated in given computer simulations, unlike stochastic processes, deterministic chaos is highly predictable in the short term by linear and I or nonlinear prediction techniques. interspike intervals recorded from somatosensory cortex and hippocampus were, thus, analyzed by using the same techniques. The results show that the neuml spontaneous interspike intervals are poorly predictable in the short term, and the models that best fit the interspike intenals are linear (AR or ARMA) stationary processes. Therefore, the pattern of neural spontaneous firing can be characterized as stochastic ratber tban deterministically chaotic.","PeriodicalId":82238,"journal":{"name":"Origins","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Are Neural Spike Trains Deterministically Chaotic or Stochastic Processes?\",\"authors\":\"M. Xie, K. Pribram, Joseph S. King\",\"doi\":\"10.4324/9781315789347-17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Before examining neural interspike intervals to see how they might encode information, an essential question that has first to be answered is whether, under the unstimulated condition, the apparent randomness of the neural firing paltern renects deterministic chaos or a stochastic process. Here, we use short term predictability and the structure of the prediction residual to determine the dynamic characteristics of interspike intervals. As demonstrated in given computer simulations, unlike stochastic processes, deterministic chaos is highly predictable in the short term by linear and I or nonlinear prediction techniques. interspike intervals recorded from somatosensory cortex and hippocampus were, thus, analyzed by using the same techniques. The results show that the neuml spontaneous interspike intervals are poorly predictable in the short term, and the models that best fit the interspike intenals are linear (AR or ARMA) stationary processes. Therefore, the pattern of neural spontaneous firing can be characterized as stochastic ratber tban deterministically chaotic.\",\"PeriodicalId\":82238,\"journal\":{\"name\":\"Origins\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Origins\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4324/9781315789347-17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Origins","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4324/9781315789347-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在检查神经棘间期以了解它们如何编码信息之前,首先要回答的一个基本问题是,在未受刺激的条件下,神经放电周期的明显随机性是否会更新确定性混沌或随机过程。在这里,我们使用短期可预测性和预测残差的结构来确定棘间期的动态特征。正如给定的计算机模拟所证明的那样,与随机过程不同,确定性混沌在短期内通过线性和I或非线性预测技术是高度可预测的。因此,通过使用相同的技术来分析从体感皮层和海马体记录的棘间期。结果表明,短期内神经自发棘突间隔的可预测性较差,最符合棘突意图的模型是线性(AR或ARMA)平稳过程。因此,神经自发放电的模式可以被表征为随机ratber tban确定性混沌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Are Neural Spike Trains Deterministically Chaotic or Stochastic Processes?
Before examining neural interspike intervals to see how they might encode information, an essential question that has first to be answered is whether, under the unstimulated condition, the apparent randomness of the neural firing paltern renects deterministic chaos or a stochastic process. Here, we use short term predictability and the structure of the prediction residual to determine the dynamic characteristics of interspike intervals. As demonstrated in given computer simulations, unlike stochastic processes, deterministic chaos is highly predictable in the short term by linear and I or nonlinear prediction techniques. interspike intervals recorded from somatosensory cortex and hippocampus were, thus, analyzed by using the same techniques. The results show that the neuml spontaneous interspike intervals are poorly predictable in the short term, and the models that best fit the interspike intenals are linear (AR or ARMA) stationary processes. Therefore, the pattern of neural spontaneous firing can be characterized as stochastic ratber tban deterministically chaotic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信