{"title":"半群作用熵的一个桥定理","authors":"A. Bruno","doi":"10.1515/taa-2020-0004","DOIUrl":null,"url":null,"abstract":"Abstract The topological entropy of a semigroup action on a totally disconnected locally compact abelian group coincides with the algebraic entropy of the dual action. This relation holds both for the entropy relative to a net and for the receptive entropy of finitely generated monoid actions.","PeriodicalId":30611,"journal":{"name":"Topological Algebra and its Applications","volume":"8 1","pages":"46 - 57"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/taa-2020-0004","citationCount":"8","resultStr":"{\"title\":\"A bridge theorem for the entropy of semigroup actions\",\"authors\":\"A. Bruno\",\"doi\":\"10.1515/taa-2020-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The topological entropy of a semigroup action on a totally disconnected locally compact abelian group coincides with the algebraic entropy of the dual action. This relation holds both for the entropy relative to a net and for the receptive entropy of finitely generated monoid actions.\",\"PeriodicalId\":30611,\"journal\":{\"name\":\"Topological Algebra and its Applications\",\"volume\":\"8 1\",\"pages\":\"46 - 57\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/taa-2020-0004\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topological Algebra and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/taa-2020-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Algebra and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/taa-2020-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
A bridge theorem for the entropy of semigroup actions
Abstract The topological entropy of a semigroup action on a totally disconnected locally compact abelian group coincides with the algebraic entropy of the dual action. This relation holds both for the entropy relative to a net and for the receptive entropy of finitely generated monoid actions.