{"title":"具有Neumann边界条件的4p阶PDES解的存在性","authors":"N. Moradi, F. Moradi, S. E. Habib, M. Addam","doi":"10.2478/mjpaa-2023-0004","DOIUrl":null,"url":null,"abstract":"Abstract In this work, we study the existence of at least one non decreasing sequence of nonnegative eigenvalues for the problem: { Δ2pu=λm(x)u in Ω,∂u∂v=∂(Δu)∂v=…=∂(Δ2p-1u)∂v=0 on ∂Ω. \\left\\{ {\\matrix{ {{\\Delta ^{2p}}u = \\lambda m\\left( x \\right)u\\,\\,\\,in\\,\\,\\,\\Omega ,} \\cr {{{\\partial u} \\over {\\partial v}} = {{\\partial \\left( {\\Delta u} \\right)} \\over {\\partial v}} = \\ldots = {{\\partial \\left( {{\\Delta ^{2p - 1}}u} \\right)} \\over {\\partial v}} = 0\\,\\,\\,on\\,\\,\\,\\partial \\Omega .} \\cr } } \\right. Where Ω is a bounded domain in ℝN with smooth boundary ∂ Ω, p ∈ ℕ*, m ∈ L∞ (Ω), and Δ2pu := Δ (Δ...( Δu)), 2p times the operator Δ.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"9 1","pages":"65 - 74"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of solutions for 4p-order PDES with Neumann boundary conditions\",\"authors\":\"N. Moradi, F. Moradi, S. E. Habib, M. Addam\",\"doi\":\"10.2478/mjpaa-2023-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work, we study the existence of at least one non decreasing sequence of nonnegative eigenvalues for the problem: { Δ2pu=λm(x)u in Ω,∂u∂v=∂(Δu)∂v=…=∂(Δ2p-1u)∂v=0 on ∂Ω. \\\\left\\\\{ {\\\\matrix{ {{\\\\Delta ^{2p}}u = \\\\lambda m\\\\left( x \\\\right)u\\\\,\\\\,\\\\,in\\\\,\\\\,\\\\,\\\\Omega ,} \\\\cr {{{\\\\partial u} \\\\over {\\\\partial v}} = {{\\\\partial \\\\left( {\\\\Delta u} \\\\right)} \\\\over {\\\\partial v}} = \\\\ldots = {{\\\\partial \\\\left( {{\\\\Delta ^{2p - 1}}u} \\\\right)} \\\\over {\\\\partial v}} = 0\\\\,\\\\,\\\\,on\\\\,\\\\,\\\\,\\\\partial \\\\Omega .} \\\\cr } } \\\\right. Where Ω is a bounded domain in ℝN with smooth boundary ∂ Ω, p ∈ ℕ*, m ∈ L∞ (Ω), and Δ2pu := Δ (Δ...( Δu)), 2p times the operator Δ.\",\"PeriodicalId\":36270,\"journal\":{\"name\":\"Moroccan Journal of Pure and Applied Analysis\",\"volume\":\"9 1\",\"pages\":\"65 - 74\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moroccan Journal of Pure and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mjpaa-2023-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2023-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Existence of solutions for 4p-order PDES with Neumann boundary conditions
Abstract In this work, we study the existence of at least one non decreasing sequence of nonnegative eigenvalues for the problem: { Δ2pu=λm(x)u in Ω,∂u∂v=∂(Δu)∂v=…=∂(Δ2p-1u)∂v=0 on ∂Ω. \left\{ {\matrix{ {{\Delta ^{2p}}u = \lambda m\left( x \right)u\,\,\,in\,\,\,\Omega ,} \cr {{{\partial u} \over {\partial v}} = {{\partial \left( {\Delta u} \right)} \over {\partial v}} = \ldots = {{\partial \left( {{\Delta ^{2p - 1}}u} \right)} \over {\partial v}} = 0\,\,\,on\,\,\,\partial \Omega .} \cr } } \right. Where Ω is a bounded domain in ℝN with smooth boundary ∂ Ω, p ∈ ℕ*, m ∈ L∞ (Ω), and Δ2pu := Δ (Δ...( Δu)), 2p times the operator Δ.