一个没有部分θ函数零点的域

Q3 Mathematics
V. Kostov
{"title":"一个没有部分θ函数零点的域","authors":"V. Kostov","doi":"10.30970/ms.58.2.142-158","DOIUrl":null,"url":null,"abstract":"The partial theta function is the sum of the series \\medskip\\centerline{$\\displaystyle\\theta (q,x):=\\sum\\nolimits _{j=0}^{\\infty}q^{j(j+1)/2}x^j$,}\\medskip\\noi where $q$is a real or complex parameter ($|q|<1$). Its name is due to similaritieswith the formula for the Jacobi theta function$\\Theta (q,x):=\\sum _{j=-\\infty}^{\\infty}q^{j^2}x^j$. The function $\\theta$ has been considered in Ramanujan's lost notebook. Itfinds applicationsin several domains, such as Ramanujan type$q$-series, the theory of (mock) modular forms, asymptotic analysis, statistical physics, combinatorics and most recently in the study of section-hyperbolic polynomials,i.~e. real polynomials with all coefficients positive,with all roots real negative and all whose sections (i.~e. truncations)are also real-rooted.For each $q$ fixed,$\\theta$ is an entire function of order $0$ in the variable~$x$. When$q$ is real and $q\\in (0,0.3092\\ldots )$, $\\theta (q,.)$ is a function of theLaguerre-P\\'olyaclass $\\mathcal{L-P}I$. More generally, for $q \\in (0,1)$, the function $\\theta (q,.)$ is the product of a realpolynomialwithout real zeros and a function of the class $\\mathcal{L-P}I$. Thus it isan entire function withinfinitely-many negative, with no positive and with finitely-many complexconjugate zeros. The latter are known to belongto an explicitly defined compact domain containing $0$ andindependent of $q$ while the negative zeros tend to infinity as ageometric progression with ratio $1/q$. A similar result is true for$q\\in (-1,0)$ when there are also infinitely-many positive zeros.We consider thequestion how close to the origin the zeros of the function $\\theta$ can be.In the generalcase when $q$ is complex it is truethat their moduli are always larger than $1/2|q|$. We consider the case when $q$ is real and prove that for any $q\\in (0,1)$,the function $\\theta (q,.)$ has no zeros on the set $$\\displaystyle \\{x\\in\\mathbb{C}\\colon |x|\\leq 3\\} \\cap \\{x\\in\\mathbb{C}\\colon {\\rm Re} x\\leq 0\\}\\cap \\{x\\in\\mathbb{C}\\colon |{\\rm Im} x|\\leq 3/\\sqrt{2}\\}$$which containsthe closure left unit half-disk and is more than $7$ times larger than it.It is unlikely this result to hold true for the whole of the lefthalf-disk of radius~$3$. Similar domains do not exist for $q\\in (0,1)$, Re$x\\geq 0$, for$q\\in (-1,0)$, Re$x\\geq 0$ and for $q\\in (-1,0)$, Re$x\\leq 0$. We show alsothat for $q\\in (0,1)$, the function $\\theta (q,.)$ has no real zeros $\\geq -5$ (but one can find zeros larger than $-7.51$).","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A domain free of the zeros of the partial theta function\",\"authors\":\"V. Kostov\",\"doi\":\"10.30970/ms.58.2.142-158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The partial theta function is the sum of the series \\\\medskip\\\\centerline{$\\\\displaystyle\\\\theta (q,x):=\\\\sum\\\\nolimits _{j=0}^{\\\\infty}q^{j(j+1)/2}x^j$,}\\\\medskip\\\\noi where $q$is a real or complex parameter ($|q|<1$). Its name is due to similaritieswith the formula for the Jacobi theta function$\\\\Theta (q,x):=\\\\sum _{j=-\\\\infty}^{\\\\infty}q^{j^2}x^j$. The function $\\\\theta$ has been considered in Ramanujan's lost notebook. Itfinds applicationsin several domains, such as Ramanujan type$q$-series, the theory of (mock) modular forms, asymptotic analysis, statistical physics, combinatorics and most recently in the study of section-hyperbolic polynomials,i.~e. real polynomials with all coefficients positive,with all roots real negative and all whose sections (i.~e. truncations)are also real-rooted.For each $q$ fixed,$\\\\theta$ is an entire function of order $0$ in the variable~$x$. When$q$ is real and $q\\\\in (0,0.3092\\\\ldots )$, $\\\\theta (q,.)$ is a function of theLaguerre-P\\\\'olyaclass $\\\\mathcal{L-P}I$. More generally, for $q \\\\in (0,1)$, the function $\\\\theta (q,.)$ is the product of a realpolynomialwithout real zeros and a function of the class $\\\\mathcal{L-P}I$. Thus it isan entire function withinfinitely-many negative, with no positive and with finitely-many complexconjugate zeros. The latter are known to belongto an explicitly defined compact domain containing $0$ andindependent of $q$ while the negative zeros tend to infinity as ageometric progression with ratio $1/q$. A similar result is true for$q\\\\in (-1,0)$ when there are also infinitely-many positive zeros.We consider thequestion how close to the origin the zeros of the function $\\\\theta$ can be.In the generalcase when $q$ is complex it is truethat their moduli are always larger than $1/2|q|$. We consider the case when $q$ is real and prove that for any $q\\\\in (0,1)$,the function $\\\\theta (q,.)$ has no zeros on the set $$\\\\displaystyle \\\\{x\\\\in\\\\mathbb{C}\\\\colon |x|\\\\leq 3\\\\} \\\\cap \\\\{x\\\\in\\\\mathbb{C}\\\\colon {\\\\rm Re} x\\\\leq 0\\\\}\\\\cap \\\\{x\\\\in\\\\mathbb{C}\\\\colon |{\\\\rm Im} x|\\\\leq 3/\\\\sqrt{2}\\\\}$$which containsthe closure left unit half-disk and is more than $7$ times larger than it.It is unlikely this result to hold true for the whole of the lefthalf-disk of radius~$3$. Similar domains do not exist for $q\\\\in (0,1)$, Re$x\\\\geq 0$, for$q\\\\in (-1,0)$, Re$x\\\\geq 0$ and for $q\\\\in (-1,0)$, Re$x\\\\leq 0$. We show alsothat for $q\\\\in (0,1)$, the function $\\\\theta (q,.)$ has no real zeros $\\\\geq -5$ (but one can find zeros larger than $-7.51$).\",\"PeriodicalId\":37555,\"journal\":{\"name\":\"Matematychni Studii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematychni Studii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/ms.58.2.142-158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.58.2.142-158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

部分theta函数是级数\madskip\central{$\displaystyle\theta(q,x):=\sum\nolimits_{j=0}^{\infty}q^{j(j+1)/2}x^j$,}\madskip \noi的和,其中$q$是实数或复数参数($|q|<1$)。它的名字是由于与Jacobiθ函数$\theta(q,x)的公式相似:=\sum_{j=-\infty}^{\fty}q^{j^2}x^j$。函数$\theta$在Ramanujan丢失的笔记本中被考虑过。它在Ramanujan型$q$-级数、(mock)模形式理论、渐近分析、统计物理学、组合数学以及最近在截面双曲多项式研究中的应用~e.所有系数都为正的实多项式,所有根都为负的实多项式及其所有部分(即截断)也是实根的。对于每个固定的$q$,$\theta$是变量~$x$中$0$阶的整个函数。当$q$是实数并且$q\in(0,0.3092\ldots)$时,$\ttheta(q,.)$是Laguerre-P\'olyaclass$\mathcal的函数{L-P}I$。更一般地说,对于$q\in(0,1)$,函数$\theta(q,.)$是一个没有实零的实数多项式和类$\mathcal函数的乘积{L-P}I$。因此,它是一个包含有限多个负、无正和有限多个复共轭零的完整函数。已知后者属于包含$0$且依赖于$q$的显式定义的紧致域,而负零作为比率为$1/q$的年龄计量级数趋向于无穷大。类似的结果适用于$q\in(-1,0)$,当也有无限多个正零时。我们考虑函数$\theta$的零离原点有多近的问题。在一般情况下,当$q$是复数时,它们的模总是大于$1/2|q|$。我们考虑$q$为实的情况,并证明了对于(0,1)$中的任何$q\in,函数$\theta(q,。)$在集合$$\displaystyle\{x\in\mathbb{C}\colon|x|\leq 3\}\cap\{x \in\math bb{C}\colon{\rm Re}x\leq 0\}\cap \{x-\in\mattbb{C}\colon|{\rm-Im}x|\liq 3/\sqrt{2}\}$$上没有零,该集合包含闭包左单位半圆盘,并且比它大$7倍多。这个结果不太可能适用于半径为$3$的整个左半圆盘。对于$q\in(0,1)$,Re$x\geq 0$,对于$q\ in(-1,0)$,Re$x\geq 0$和对于$q\lin(-1,00)$,Re$x\leq 0$不存在类似的域。我们还证明了对于$q\in(0,1)$,函数$\theta(q,.)$没有实零$\geq-5$(但可以找到大于$-7.51$的零)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A domain free of the zeros of the partial theta function
The partial theta function is the sum of the series \medskip\centerline{$\displaystyle\theta (q,x):=\sum\nolimits _{j=0}^{\infty}q^{j(j+1)/2}x^j$,}\medskip\noi where $q$is a real or complex parameter ($|q|<1$). Its name is due to similaritieswith the formula for the Jacobi theta function$\Theta (q,x):=\sum _{j=-\infty}^{\infty}q^{j^2}x^j$. The function $\theta$ has been considered in Ramanujan's lost notebook. Itfinds applicationsin several domains, such as Ramanujan type$q$-series, the theory of (mock) modular forms, asymptotic analysis, statistical physics, combinatorics and most recently in the study of section-hyperbolic polynomials,i.~e. real polynomials with all coefficients positive,with all roots real negative and all whose sections (i.~e. truncations)are also real-rooted.For each $q$ fixed,$\theta$ is an entire function of order $0$ in the variable~$x$. When$q$ is real and $q\in (0,0.3092\ldots )$, $\theta (q,.)$ is a function of theLaguerre-P\'olyaclass $\mathcal{L-P}I$. More generally, for $q \in (0,1)$, the function $\theta (q,.)$ is the product of a realpolynomialwithout real zeros and a function of the class $\mathcal{L-P}I$. Thus it isan entire function withinfinitely-many negative, with no positive and with finitely-many complexconjugate zeros. The latter are known to belongto an explicitly defined compact domain containing $0$ andindependent of $q$ while the negative zeros tend to infinity as ageometric progression with ratio $1/q$. A similar result is true for$q\in (-1,0)$ when there are also infinitely-many positive zeros.We consider thequestion how close to the origin the zeros of the function $\theta$ can be.In the generalcase when $q$ is complex it is truethat their moduli are always larger than $1/2|q|$. We consider the case when $q$ is real and prove that for any $q\in (0,1)$,the function $\theta (q,.)$ has no zeros on the set $$\displaystyle \{x\in\mathbb{C}\colon |x|\leq 3\} \cap \{x\in\mathbb{C}\colon {\rm Re} x\leq 0\}\cap \{x\in\mathbb{C}\colon |{\rm Im} x|\leq 3/\sqrt{2}\}$$which containsthe closure left unit half-disk and is more than $7$ times larger than it.It is unlikely this result to hold true for the whole of the lefthalf-disk of radius~$3$. Similar domains do not exist for $q\in (0,1)$, Re$x\geq 0$, for$q\in (-1,0)$, Re$x\geq 0$ and for $q\in (-1,0)$, Re$x\leq 0$. We show alsothat for $q\in (0,1)$, the function $\theta (q,.)$ has no real zeros $\geq -5$ (but one can find zeros larger than $-7.51$).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信