具有整数Sombor指数的非半正则二部图

IF 1 Q1 MATHEMATICS
M. Oboudi
{"title":"具有整数Sombor指数的非半正则二部图","authors":"M. Oboudi","doi":"10.47443/dml.2021.0107","DOIUrl":null,"url":null,"abstract":"Abstract For a simple graphG, the Sombor index (a recently introduced vertex-degree based molecular structure descriptor) is defined as SO(G) = ∑ uv∈E(G) √ du + dv, where dv is the degree of v. A graph is bipartite semi-regular if it is bipartite bidegreed and all vertices in the same class of bipartition have the same degree. In the recent paper [T. Došlić, T. Réti, A. Ali, Discrete Math. Lett. 7 (2021) 1–4] the following claim was posed: “Let G be a connected bipartite graph. Then SO(G) is an integer if and only if G is bipartite semi-regular and its degrees δ and ∆ appear as non-maximal elements in some Pythagorean triple”. In the present paper we show that the ‘only if’ part of the mentioned claim is not true. More precisely, we construct infinite number of connected bipartite graphs such that in their degree sequences there are three or four distinct numbers.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Non-semiregular bipartite graphs with integer Sombor index\",\"authors\":\"M. Oboudi\",\"doi\":\"10.47443/dml.2021.0107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For a simple graphG, the Sombor index (a recently introduced vertex-degree based molecular structure descriptor) is defined as SO(G) = ∑ uv∈E(G) √ du + dv, where dv is the degree of v. A graph is bipartite semi-regular if it is bipartite bidegreed and all vertices in the same class of bipartition have the same degree. In the recent paper [T. Došlić, T. Réti, A. Ali, Discrete Math. Lett. 7 (2021) 1–4] the following claim was posed: “Let G be a connected bipartite graph. Then SO(G) is an integer if and only if G is bipartite semi-regular and its degrees δ and ∆ appear as non-maximal elements in some Pythagorean triple”. In the present paper we show that the ‘only if’ part of the mentioned claim is not true. More precisely, we construct infinite number of connected bipartite graphs such that in their degree sequences there are three or four distinct numbers.\",\"PeriodicalId\":36023,\"journal\":{\"name\":\"Discrete Mathematics Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/dml.2021.0107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2021.0107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要对于一个简单的图G,Sombor指数(最近引入的一种基于顶点度的分子结构描述符)被定义为SO(G)=∑uv∈E(G)√du+dv,其中dv是v的度。如果图是二分二度图,并且同一类二分图中的所有顶点都具有相同的度,则图是二部分半正则图。在最近的论文[T.Došlić,T.Réti,A.Ali,Discrete Math.Lett.7(2021)1-4]中,提出了以下主张:“设G是连通二分图。那么SO(G)是一个整数,当且仅当G是二分半正则的,并且它的度δ和∆在一些勾股三元组中表现为非极大元素”。在本文中,我们证明了上述权利要求的“仅当”部分是不真实的。更准确地说,我们构造了无限多个连通二分图,使得在它们的度序列中有三个或四个不同的数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-semiregular bipartite graphs with integer Sombor index
Abstract For a simple graphG, the Sombor index (a recently introduced vertex-degree based molecular structure descriptor) is defined as SO(G) = ∑ uv∈E(G) √ du + dv, where dv is the degree of v. A graph is bipartite semi-regular if it is bipartite bidegreed and all vertices in the same class of bipartition have the same degree. In the recent paper [T. Došlić, T. Réti, A. Ali, Discrete Math. Lett. 7 (2021) 1–4] the following claim was posed: “Let G be a connected bipartite graph. Then SO(G) is an integer if and only if G is bipartite semi-regular and its degrees δ and ∆ appear as non-maximal elements in some Pythagorean triple”. In the present paper we show that the ‘only if’ part of the mentioned claim is not true. More precisely, we construct infinite number of connected bipartite graphs such that in their degree sequences there are three or four distinct numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信