LEP:一种整合来自不同种群的同一性状的个体水平和汇总水平数据的统计方法

Mingwei Dai, Jin Liu, Can Yang
{"title":"LEP:一种整合来自不同种群的同一性状的个体水平和汇总水平数据的统计方法","authors":"Mingwei Dai, Jin Liu, Can Yang","doi":"10.1177/1178222619881624","DOIUrl":null,"url":null,"abstract":"Statistical approaches for integrating multiple data sets in genome-wide association studies (GWASs) are increasingly important. Proper utilization of more relevant information is expected to improve statistical efficiency in the analysis. Among these approaches, LEP was proposed for joint analysis of individual-level data and summary-level data in the same population by leveraging pleiotropy. The key idea of LEP is to explore correlation of the association status among different data sets while accounting for the heterogeneity. In this commentary, we show that LEP is applicable to integrate individual-level data and summary-level data of the same trait from different populations, providing new insights into the genetic architecture of different populations.","PeriodicalId":88397,"journal":{"name":"Biomedical informatics insights","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1178222619881624","citationCount":"0","resultStr":"{\"title\":\"LEP: A Statistical Method Integrating Individual-Level and Summary-Level Data of the Same Trait From Different Populations\",\"authors\":\"Mingwei Dai, Jin Liu, Can Yang\",\"doi\":\"10.1177/1178222619881624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistical approaches for integrating multiple data sets in genome-wide association studies (GWASs) are increasingly important. Proper utilization of more relevant information is expected to improve statistical efficiency in the analysis. Among these approaches, LEP was proposed for joint analysis of individual-level data and summary-level data in the same population by leveraging pleiotropy. The key idea of LEP is to explore correlation of the association status among different data sets while accounting for the heterogeneity. In this commentary, we show that LEP is applicable to integrate individual-level data and summary-level data of the same trait from different populations, providing new insights into the genetic architecture of different populations.\",\"PeriodicalId\":88397,\"journal\":{\"name\":\"Biomedical informatics insights\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1178222619881624\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical informatics insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1178222619881624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical informatics insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1178222619881624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在全基因组关联研究(GWASs)中,整合多个数据集的统计方法越来越重要。预期适当地利用更多有关的资料将提高分析的统计效率。在这些方法中,LEP被提出利用多效性对同一人群的个体水平数据和汇总水平数据进行联合分析。LEP的核心思想是在考虑异质性的同时,探索不同数据集之间关联状态的相关性。在这篇评论中,我们表明LEP适用于整合来自不同群体的同一性状的个体水平数据和汇总水平数据,为不同群体的遗传结构提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LEP: A Statistical Method Integrating Individual-Level and Summary-Level Data of the Same Trait From Different Populations
Statistical approaches for integrating multiple data sets in genome-wide association studies (GWASs) are increasingly important. Proper utilization of more relevant information is expected to improve statistical efficiency in the analysis. Among these approaches, LEP was proposed for joint analysis of individual-level data and summary-level data in the same population by leveraging pleiotropy. The key idea of LEP is to explore correlation of the association status among different data sets while accounting for the heterogeneity. In this commentary, we show that LEP is applicable to integrate individual-level data and summary-level data of the same trait from different populations, providing new insights into the genetic architecture of different populations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信