{"title":"实线上κ-Hankel小波变换的Besov型空间","authors":"Ashish Pathak, Shrish Pandey","doi":"10.1515/conop-2020-0117","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we shall introduce functions spaces as subspaces of Lpκ (ℝ) that we call Besov-κ-Hankel spaces and extend the concept of κ-Hankel wavelet transform in Lpκ(ℝ) space. Subsequently we will characterize the Besov-κ-Hankel space by using κ-Hankel wavelet coefficients.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Besov-type spaces for the κ-Hankel wavelet transform on the real line\",\"authors\":\"Ashish Pathak, Shrish Pandey\",\"doi\":\"10.1515/conop-2020-0117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we shall introduce functions spaces as subspaces of Lpκ (ℝ) that we call Besov-κ-Hankel spaces and extend the concept of κ-Hankel wavelet transform in Lpκ(ℝ) space. Subsequently we will characterize the Besov-κ-Hankel space by using κ-Hankel wavelet coefficients.\",\"PeriodicalId\":53800,\"journal\":{\"name\":\"Concrete Operators\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concrete Operators\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/conop-2020-0117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2020-0117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Besov-type spaces for the κ-Hankel wavelet transform on the real line
Abstract In this paper, we shall introduce functions spaces as subspaces of Lpκ (ℝ) that we call Besov-κ-Hankel spaces and extend the concept of κ-Hankel wavelet transform in Lpκ(ℝ) space. Subsequently we will characterize the Besov-κ-Hankel space by using κ-Hankel wavelet coefficients.