{"title":"在含SiO2纳米颗粒的CaCl2中脉冲电沉积多晶Si薄膜","authors":"T. Lim, Yeosol Yoon","doi":"10.33961/jecst.2023.00304","DOIUrl":null,"url":null,"abstract":"The high cost of Si-based solar cells remains a substantial challenge to their widespread adoption. To address this issue, it is essential to reduce the production cost of solar-grade Si, which is used as raw material. One approach to achieve this is Si electrodeposition in molten salts containing Si sources, such as SiO 2 . In this study, we present the pulse electrode-position of Si in molten CaCl 2 containing SiO 2 nanoparticles. Theoretically, SiO 2 nanoparticles with a diameter of less than 20 nm in molten CaCl 2 at 850°C have a comparable diffusion coefficient with that of ions in aqueous solutions at room temperature. However, we observed a slower-than-expected diffusion of the SiO 2 nanoparticles, probably because of their tendency to aggregate in the molten CaCl 2 . This led to the formation of a non-uniform Si film with low current efficiency during direct current electrodeposition. We overcome this issue using pulse electrodeposition, which enabled the facile supplementation of SiO 2 nanoparticles to the substrate. This approach produced a uniform and thick electrodeposited Si film. Our results demonstrate an efficient method for Si electrodeposition in molten CaCl 2 containing SiO 2 nanoparticles, which can contribute to a reduction in production cost of solar-grade Si.","PeriodicalId":15542,"journal":{"name":"Journal of electrochemical science and technology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pulse Electrodeposition of Polycrystalline Si Film in Molten CaCl2 Containing SiO2 Nanoparticles\",\"authors\":\"T. Lim, Yeosol Yoon\",\"doi\":\"10.33961/jecst.2023.00304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high cost of Si-based solar cells remains a substantial challenge to their widespread adoption. To address this issue, it is essential to reduce the production cost of solar-grade Si, which is used as raw material. One approach to achieve this is Si electrodeposition in molten salts containing Si sources, such as SiO 2 . In this study, we present the pulse electrode-position of Si in molten CaCl 2 containing SiO 2 nanoparticles. Theoretically, SiO 2 nanoparticles with a diameter of less than 20 nm in molten CaCl 2 at 850°C have a comparable diffusion coefficient with that of ions in aqueous solutions at room temperature. However, we observed a slower-than-expected diffusion of the SiO 2 nanoparticles, probably because of their tendency to aggregate in the molten CaCl 2 . This led to the formation of a non-uniform Si film with low current efficiency during direct current electrodeposition. We overcome this issue using pulse electrodeposition, which enabled the facile supplementation of SiO 2 nanoparticles to the substrate. This approach produced a uniform and thick electrodeposited Si film. Our results demonstrate an efficient method for Si electrodeposition in molten CaCl 2 containing SiO 2 nanoparticles, which can contribute to a reduction in production cost of solar-grade Si.\",\"PeriodicalId\":15542,\"journal\":{\"name\":\"Journal of electrochemical science and technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of electrochemical science and technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.33961/jecst.2023.00304\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electrochemical science and technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.33961/jecst.2023.00304","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Pulse Electrodeposition of Polycrystalline Si Film in Molten CaCl2 Containing SiO2 Nanoparticles
The high cost of Si-based solar cells remains a substantial challenge to their widespread adoption. To address this issue, it is essential to reduce the production cost of solar-grade Si, which is used as raw material. One approach to achieve this is Si electrodeposition in molten salts containing Si sources, such as SiO 2 . In this study, we present the pulse electrode-position of Si in molten CaCl 2 containing SiO 2 nanoparticles. Theoretically, SiO 2 nanoparticles with a diameter of less than 20 nm in molten CaCl 2 at 850°C have a comparable diffusion coefficient with that of ions in aqueous solutions at room temperature. However, we observed a slower-than-expected diffusion of the SiO 2 nanoparticles, probably because of their tendency to aggregate in the molten CaCl 2 . This led to the formation of a non-uniform Si film with low current efficiency during direct current electrodeposition. We overcome this issue using pulse electrodeposition, which enabled the facile supplementation of SiO 2 nanoparticles to the substrate. This approach produced a uniform and thick electrodeposited Si film. Our results demonstrate an efficient method for Si electrodeposition in molten CaCl 2 containing SiO 2 nanoparticles, which can contribute to a reduction in production cost of solar-grade Si.