论大宗商品市场中“羊群行为”的有效性:深度学习交易者的神经模糊主体“羊群”

IF 1.3 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Alfonso Guarino, Luca Grilli, Domenico Santoro, Francesco Messina, Rocco Zaccagnino
{"title":"论大宗商品市场中“羊群行为”的有效性:深度学习交易者的神经模糊主体“羊群”","authors":"Alfonso Guarino,&nbsp;Luca Grilli,&nbsp;Domenico Santoro,&nbsp;Francesco Messina,&nbsp;Rocco Zaccagnino","doi":"10.1002/asmb.2793","DOIUrl":null,"url":null,"abstract":"<p>This article analyzes the trading strategies of five state-of-the-art agents based on reinforcement learning on six commodity futures: brent oil, corn, gold, coal, natural gas, and sugar. Some of these were chosen because of the periods considered (when they became essential commodities), that is, before and after the 2022 Russia–Ukraine conflict. Agents behavior was assessed using a series of financial indicators, and the trader with the best strategy was selected. Top traders' behavior helped train our recently introduced neuro-fuzzy agent, which adjusted its trading strategy through “herd behavior.” The results highlight how the reinforcement learning agents performed excellently and how our neuro-fuzzy trader could improve its strategy using competitor movement information. Finally, we performed experiments with and without transaction costs, observing that, despite these costs, there are fewer transactions. Moreover, the intelligent agents' performances are outstanding and surpassed by the neuro-fuzzy agent.</p>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asmb.2793","citationCount":"0","resultStr":"{\"title\":\"On the efficacy of “herd behavior” in the commodities market: A neuro-fuzzy agent “herding” on deep learning traders\",\"authors\":\"Alfonso Guarino,&nbsp;Luca Grilli,&nbsp;Domenico Santoro,&nbsp;Francesco Messina,&nbsp;Rocco Zaccagnino\",\"doi\":\"10.1002/asmb.2793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article analyzes the trading strategies of five state-of-the-art agents based on reinforcement learning on six commodity futures: brent oil, corn, gold, coal, natural gas, and sugar. Some of these were chosen because of the periods considered (when they became essential commodities), that is, before and after the 2022 Russia–Ukraine conflict. Agents behavior was assessed using a series of financial indicators, and the trader with the best strategy was selected. Top traders' behavior helped train our recently introduced neuro-fuzzy agent, which adjusted its trading strategy through “herd behavior.” The results highlight how the reinforcement learning agents performed excellently and how our neuro-fuzzy trader could improve its strategy using competitor movement information. Finally, we performed experiments with and without transaction costs, observing that, despite these costs, there are fewer transactions. Moreover, the intelligent agents' performances are outstanding and surpassed by the neuro-fuzzy agent.</p>\",\"PeriodicalId\":55495,\"journal\":{\"name\":\"Applied Stochastic Models in Business and Industry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asmb.2793\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Stochastic Models in Business and Industry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2793\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2793","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了基于强化学习的五个最先进代理在六种商品期货(布伦特石油、玉米、黄金、煤炭、天然气和糖)上的交易策略。之所以选择其中一些,是因为考虑到了它们成为必需品的时期,即 2022 年俄乌冲突前后。我们使用一系列金融指标对代理商的行为进行了评估,并选出了策略最佳的交易商。顶级交易员的行为有助于训练我们最近推出的神经模糊代理,该代理通过 "羊群行为 "调整其交易策略。结果凸显了强化学习代理的出色表现,以及我们的神经模糊交易员如何利用竞争对手的动向信息改进其策略。最后,我们进行了有交易成本和无交易成本的实验,观察到尽管有交易成本,但交易量较少。此外,智能代理的表现也很突出,神经模糊代理的表现更胜一筹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the efficacy of “herd behavior” in the commodities market: A neuro-fuzzy agent “herding” on deep learning traders

On the efficacy of “herd behavior” in the commodities market: A neuro-fuzzy agent “herding” on deep learning traders

This article analyzes the trading strategies of five state-of-the-art agents based on reinforcement learning on six commodity futures: brent oil, corn, gold, coal, natural gas, and sugar. Some of these were chosen because of the periods considered (when they became essential commodities), that is, before and after the 2022 Russia–Ukraine conflict. Agents behavior was assessed using a series of financial indicators, and the trader with the best strategy was selected. Top traders' behavior helped train our recently introduced neuro-fuzzy agent, which adjusted its trading strategy through “herd behavior.” The results highlight how the reinforcement learning agents performed excellently and how our neuro-fuzzy trader could improve its strategy using competitor movement information. Finally, we performed experiments with and without transaction costs, observing that, despite these costs, there are fewer transactions. Moreover, the intelligent agents' performances are outstanding and surpassed by the neuro-fuzzy agent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
67
审稿时长
>12 weeks
期刊介绍: ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process. The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信