织物结构稳定性对双向角互锁机织复合材料拉伸性能的影响

IF 4 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhenyu Ma, Wensuo Ma, Ruidong Man, Zhenhao Ma, Yong-hao Xu, Liguang Yang, Chenhui Jia
{"title":"织物结构稳定性对双向角互锁机织复合材料拉伸性能的影响","authors":"Zhenyu Ma, Wensuo Ma, Ruidong Man, Zhenhao Ma, Yong-hao Xu, Liguang Yang, Chenhui Jia","doi":"10.1177/10567895231181608","DOIUrl":null,"url":null,"abstract":"Three-dimensional bidirectional angle-interlock woven (3DBAW) composites exhibit the orthogonal high modulus, which has the potential to be used in load-bearing components. 3DBAW preforms prepared using the certain and uncertain cross-sectional yarns exhibit various structural characteristics, and the mechanical properties of composites show the high variation. To investigate the effect of fabric structural stability on the elastic properties of 3DBAW composites and broaden its application, contrast analysis of quasi-static tensile properties of composite specimens was proposed, and the failure mechanism was analysed. The results showed that the high tensile initial elastic modulus of 3DBAW composites was attributed to the low curvature of load-bearing yarns. For composites with stable fabrics, the tensile process was smooth and steady owing to the uniform fiber spacing, and the tensile elastic modulus and strength show the smaller coefficient of variation. The tensile crack surfaces of composites with stable structural fabrics were regular, and making the full use of the load-bearing yarns. 3DBAW preforms with stable structure can effectively reduce the fluctuation of changes at the initial stage of loading, and the translaminar fracture and adhesive matrix failure are the main failure modes without the obvious interlaminar fracture. The results provided the support for the application of 3DBAW composite in load-bearing components.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"32 1","pages":"989 - 1007"},"PeriodicalIF":4.0000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of fabric structural stability on the tensile property of bidirectional angle-interlock woven composites\",\"authors\":\"Zhenyu Ma, Wensuo Ma, Ruidong Man, Zhenhao Ma, Yong-hao Xu, Liguang Yang, Chenhui Jia\",\"doi\":\"10.1177/10567895231181608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three-dimensional bidirectional angle-interlock woven (3DBAW) composites exhibit the orthogonal high modulus, which has the potential to be used in load-bearing components. 3DBAW preforms prepared using the certain and uncertain cross-sectional yarns exhibit various structural characteristics, and the mechanical properties of composites show the high variation. To investigate the effect of fabric structural stability on the elastic properties of 3DBAW composites and broaden its application, contrast analysis of quasi-static tensile properties of composite specimens was proposed, and the failure mechanism was analysed. The results showed that the high tensile initial elastic modulus of 3DBAW composites was attributed to the low curvature of load-bearing yarns. For composites with stable fabrics, the tensile process was smooth and steady owing to the uniform fiber spacing, and the tensile elastic modulus and strength show the smaller coefficient of variation. The tensile crack surfaces of composites with stable structural fabrics were regular, and making the full use of the load-bearing yarns. 3DBAW preforms with stable structure can effectively reduce the fluctuation of changes at the initial stage of loading, and the translaminar fracture and adhesive matrix failure are the main failure modes without the obvious interlaminar fracture. The results provided the support for the application of 3DBAW composite in load-bearing components.\",\"PeriodicalId\":13837,\"journal\":{\"name\":\"International Journal of Damage Mechanics\",\"volume\":\"32 1\",\"pages\":\"989 - 1007\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Damage Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10567895231181608\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10567895231181608","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

三维双向角互锁编织(3DBAW)复合材料具有正交高模量,具有应用于承载构件的潜力。使用特定和不确定截面纱线制备的3DBAW预成型件表现出不同的结构特征,复合材料的力学性能变化很大。为了研究织物结构稳定性对3DBAW复合材料弹性性能的影响并拓宽其应用范围,提出了复合材料试件准静态拉伸性能的对比分析,并分析了其破坏机理。结果表明,3DBAW复合材料的高拉伸初始弹性模量归因于承载纱线的低曲率。对于织物稳定的复合材料,由于纤维间距均匀,拉伸过程平稳,拉伸弹性模量和强度变化系数较小。具有稳定结构织物的复合材料的拉伸裂纹表面是规则的,并充分利用了承载纱线。结构稳定的3DBAW预成型件可以有效地减少加载初期变化的波动,跨层断裂和粘结基体失效是主要的失效模式,没有明显的层间断裂。研究结果为3DBAW复合材料在承载构件中的应用提供了支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of fabric structural stability on the tensile property of bidirectional angle-interlock woven composites
Three-dimensional bidirectional angle-interlock woven (3DBAW) composites exhibit the orthogonal high modulus, which has the potential to be used in load-bearing components. 3DBAW preforms prepared using the certain and uncertain cross-sectional yarns exhibit various structural characteristics, and the mechanical properties of composites show the high variation. To investigate the effect of fabric structural stability on the elastic properties of 3DBAW composites and broaden its application, contrast analysis of quasi-static tensile properties of composite specimens was proposed, and the failure mechanism was analysed. The results showed that the high tensile initial elastic modulus of 3DBAW composites was attributed to the low curvature of load-bearing yarns. For composites with stable fabrics, the tensile process was smooth and steady owing to the uniform fiber spacing, and the tensile elastic modulus and strength show the smaller coefficient of variation. The tensile crack surfaces of composites with stable structural fabrics were regular, and making the full use of the load-bearing yarns. 3DBAW preforms with stable structure can effectively reduce the fluctuation of changes at the initial stage of loading, and the translaminar fracture and adhesive matrix failure are the main failure modes without the obvious interlaminar fracture. The results provided the support for the application of 3DBAW composite in load-bearing components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Damage Mechanics
International Journal of Damage Mechanics 工程技术-材料科学:综合
CiteScore
8.70
自引率
26.20%
发文量
48
审稿时长
5.4 months
期刊介绍: Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics. Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department. The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信