Muhammad Waseem Yaseen, M. Awais, Khuram Riaz, M. B. Rasheed, Muhammad Waqar, S. Rasheed
{"title":"基于人工智能的巴基斯坦Danyor站Hunza河洪水预报","authors":"Muhammad Waseem Yaseen, M. Awais, Khuram Riaz, M. B. Rasheed, Muhammad Waqar, S. Rasheed","doi":"10.2478/heem-2022-0005","DOIUrl":null,"url":null,"abstract":"Abstract Floods can cause significant problems for humans and can damage the economy. Implementing a reliable flood monitoring warning system in risk areas can help to reduce the negative impacts of these natural disasters. Artificial intelligence algorithms and statistical approaches are employed by researchers to enhance flood forecasting. In this study, a dataset was created using unique features measured by sensors along the Hunza River in Pakistan over the past 31 years. The dataset was used for classification and regression problems. Two types of machine learning algorithms were tested for classification: classical algorithms (Random Forest, RF and Support Vector Classifier, SVC) and deep learning algorithms (Multi-Layer Perceptron, MLP). For the regression problem, the result of MLP and Support Vector Regression (SVR) algorithms were compared based on their mean square, root mean square and mean absolute errors. The results obtained show that the accuracy of the RF classifier is 0.99, while the accuracies of the SVC and MLP methods are 0.98; moreover, in the case of flood prediction, the SVR algorithm outperforms the MLP approach.","PeriodicalId":53658,"journal":{"name":"Archives of Hydroengineering and Environmental Mechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Artificial Intelligence Based Flood Forecasting for River Hunza at Danyor Station in Pakistan\",\"authors\":\"Muhammad Waseem Yaseen, M. Awais, Khuram Riaz, M. B. Rasheed, Muhammad Waqar, S. Rasheed\",\"doi\":\"10.2478/heem-2022-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Floods can cause significant problems for humans and can damage the economy. Implementing a reliable flood monitoring warning system in risk areas can help to reduce the negative impacts of these natural disasters. Artificial intelligence algorithms and statistical approaches are employed by researchers to enhance flood forecasting. In this study, a dataset was created using unique features measured by sensors along the Hunza River in Pakistan over the past 31 years. The dataset was used for classification and regression problems. Two types of machine learning algorithms were tested for classification: classical algorithms (Random Forest, RF and Support Vector Classifier, SVC) and deep learning algorithms (Multi-Layer Perceptron, MLP). For the regression problem, the result of MLP and Support Vector Regression (SVR) algorithms were compared based on their mean square, root mean square and mean absolute errors. The results obtained show that the accuracy of the RF classifier is 0.99, while the accuracies of the SVC and MLP methods are 0.98; moreover, in the case of flood prediction, the SVR algorithm outperforms the MLP approach.\",\"PeriodicalId\":53658,\"journal\":{\"name\":\"Archives of Hydroengineering and Environmental Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Hydroengineering and Environmental Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/heem-2022-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Hydroengineering and Environmental Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/heem-2022-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
Artificial Intelligence Based Flood Forecasting for River Hunza at Danyor Station in Pakistan
Abstract Floods can cause significant problems for humans and can damage the economy. Implementing a reliable flood monitoring warning system in risk areas can help to reduce the negative impacts of these natural disasters. Artificial intelligence algorithms and statistical approaches are employed by researchers to enhance flood forecasting. In this study, a dataset was created using unique features measured by sensors along the Hunza River in Pakistan over the past 31 years. The dataset was used for classification and regression problems. Two types of machine learning algorithms were tested for classification: classical algorithms (Random Forest, RF and Support Vector Classifier, SVC) and deep learning algorithms (Multi-Layer Perceptron, MLP). For the regression problem, the result of MLP and Support Vector Regression (SVR) algorithms were compared based on their mean square, root mean square and mean absolute errors. The results obtained show that the accuracy of the RF classifier is 0.99, while the accuracies of the SVC and MLP methods are 0.98; moreover, in the case of flood prediction, the SVR algorithm outperforms the MLP approach.
期刊介绍:
Archives of Hydro-Engineering and Environmental Mechanics cover the broad area of disciplines related to hydro-engineering, including: hydrodynamics and hydraulics of inlands and sea waters, hydrology, hydroelasticity, ground-water hydraulics, water contamination, coastal engineering, geotechnical engineering, geomechanics, structural mechanics, etc. The main objective of Archives of Hydro-Engineering and Environmental Mechanics is to provide an up-to-date reference to the engineers and scientists engaged in the applications of mechanics to the analysis of various phenomena appearing in the natural environment.