{"title":"有机光伏异质结FTAZ/IDCIC的理论研究","authors":"Bingwang Yang, Cairong Zhang, Yu Wang, Mei-ling Zhang, Zi-Jiang Liu, Youzhi Wu, Hongshan Chen","doi":"10.1063/1674-0068/cjcp2109160","DOIUrl":null,"url":null,"abstract":"Understanding organic photovoltaic (OPV) work principles and the materials’ optoelectronic properties is fundamental for developing novel heterojunction materials with the aim of improving power conversion efficiency (PCE) of organic solar cells. Here, in order to understand the PCE performance (>13%) of OPV device composed of the non-fullerene acceptor fusing naphtho[1,2-b:5,6-b′]dithiophene with two thieno[3,2-b]thiophene (IDCIC) and the polymer donor fluorobenzotriazole (FTAZ), with the aid of extensive quantum chemistry calculations, we investigated the geometries, molecular orbitals, excitations, electrostatic potentials, transferred charges and charge transfer distances of FTAZ, IDCIC and their complexes with face-on configurations, which was constructed as heterojunction interface model. The results indicate that, the prominent OPV performance of FTAZ:IDCIC heterojunction is caused by co-planarity between the donor and acceptor fragments in IDCIC, the the charge transfer (CT) and hybrid excitations of FTAZ and IDCIC, the complementary optical absorptions in visible region, and the large electrostatic potential difference between FTAZ and IDCIC. The electronic structures and excitations of FTAZ/IDCIC complexes suggest that exciton dissociation can fulfill through the decay of local excitation exciton in acceptor by means of hole transfer, which is quite different from the OPVs based on fullerenes acceptor. The rates of exciton dissociation, charge recombination and CT processes, which were evaluated by Marcus theory, support the efficient exciton dissociation that is also responsible for good photovoltaic performance.","PeriodicalId":10036,"journal":{"name":"Chinese Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Theoretical study on organic photovoltaic heterojunction FTAZ/IDCIC\",\"authors\":\"Bingwang Yang, Cairong Zhang, Yu Wang, Mei-ling Zhang, Zi-Jiang Liu, Youzhi Wu, Hongshan Chen\",\"doi\":\"10.1063/1674-0068/cjcp2109160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding organic photovoltaic (OPV) work principles and the materials’ optoelectronic properties is fundamental for developing novel heterojunction materials with the aim of improving power conversion efficiency (PCE) of organic solar cells. Here, in order to understand the PCE performance (>13%) of OPV device composed of the non-fullerene acceptor fusing naphtho[1,2-b:5,6-b′]dithiophene with two thieno[3,2-b]thiophene (IDCIC) and the polymer donor fluorobenzotriazole (FTAZ), with the aid of extensive quantum chemistry calculations, we investigated the geometries, molecular orbitals, excitations, electrostatic potentials, transferred charges and charge transfer distances of FTAZ, IDCIC and their complexes with face-on configurations, which was constructed as heterojunction interface model. The results indicate that, the prominent OPV performance of FTAZ:IDCIC heterojunction is caused by co-planarity between the donor and acceptor fragments in IDCIC, the the charge transfer (CT) and hybrid excitations of FTAZ and IDCIC, the complementary optical absorptions in visible region, and the large electrostatic potential difference between FTAZ and IDCIC. The electronic structures and excitations of FTAZ/IDCIC complexes suggest that exciton dissociation can fulfill through the decay of local excitation exciton in acceptor by means of hole transfer, which is quite different from the OPVs based on fullerenes acceptor. The rates of exciton dissociation, charge recombination and CT processes, which were evaluated by Marcus theory, support the efficient exciton dissociation that is also responsible for good photovoltaic performance.\",\"PeriodicalId\":10036,\"journal\":{\"name\":\"Chinese Journal of Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/1674-0068/cjcp2109160\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/1674-0068/cjcp2109160","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
Theoretical study on organic photovoltaic heterojunction FTAZ/IDCIC
Understanding organic photovoltaic (OPV) work principles and the materials’ optoelectronic properties is fundamental for developing novel heterojunction materials with the aim of improving power conversion efficiency (PCE) of organic solar cells. Here, in order to understand the PCE performance (>13%) of OPV device composed of the non-fullerene acceptor fusing naphtho[1,2-b:5,6-b′]dithiophene with two thieno[3,2-b]thiophene (IDCIC) and the polymer donor fluorobenzotriazole (FTAZ), with the aid of extensive quantum chemistry calculations, we investigated the geometries, molecular orbitals, excitations, electrostatic potentials, transferred charges and charge transfer distances of FTAZ, IDCIC and their complexes with face-on configurations, which was constructed as heterojunction interface model. The results indicate that, the prominent OPV performance of FTAZ:IDCIC heterojunction is caused by co-planarity between the donor and acceptor fragments in IDCIC, the the charge transfer (CT) and hybrid excitations of FTAZ and IDCIC, the complementary optical absorptions in visible region, and the large electrostatic potential difference between FTAZ and IDCIC. The electronic structures and excitations of FTAZ/IDCIC complexes suggest that exciton dissociation can fulfill through the decay of local excitation exciton in acceptor by means of hole transfer, which is quite different from the OPVs based on fullerenes acceptor. The rates of exciton dissociation, charge recombination and CT processes, which were evaluated by Marcus theory, support the efficient exciton dissociation that is also responsible for good photovoltaic performance.
期刊介绍:
Chinese Journal of Chemical Physics (CJCP) aims to bridge atomic and molecular level research in broad scope for disciplines in chemistry, physics, material science and life sciences, including the following:
Theoretical Methods, Algorithms, Statistical and Quantum Chemistry
Gas Phase Dynamics and Structure: Spectroscopy, Molecular Interactions, Scattering, Photochemistry
Condensed Phase Dynamics, Structure, and Thermodynamics: Spectroscopy, Reactions, and Relaxation Processes
Surfaces, Interfaces, Single Molecules, Materials and Nanosciences
Polymers, Biopolymers, and Complex Systems
Other related topics