{"title":"基于混合深度神经网络的物联网云环境下高效卸载性能估计方法","authors":"Yunsik Son, Seman Oh, Yangsun Lee","doi":"10.14257/ijgdc.2018.11.7.03","DOIUrl":null,"url":null,"abstract":"The IoT-Cloud virtual machine system is a cloud-based execution solution for IoT devices with offloading techniques that delegate tasks requiring high computing power from low-performance IoT devices to a high-performance cloud environment as a service. The IoT devices with the IoT-Cloud virtual machine system can perform complex tasks using the computing power of high-performance cloud. The offloading technique can reduce the execution performance depending on the workload of the IoT devices and the clouds. Therefore, it is necessary to decide offloading execution considering the workload of the IoT devices and the clouds. In this paper, CPU utilization trend, which is one of the workload indices, is predicted through deep learning in order to decide offloading execution considering the workload of the IoT devices and clouds. In this paper, we present four CPU usage models and introduce a technique for predicting server load based on hybrid deep neural network. The predicted CPU utilization trend is indicative of future CPU utilization information and is therefore an indicator for offloading execution decisions. Through experiments, we confirmed that the proposed method estimates the load of the model very similar, and it can apply the offloading adaptively according to the load of the server.","PeriodicalId":46000,"journal":{"name":"International Journal of Grid and Distributed Computing","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hybrid Deep Neural Network based Performance Estimation Method for Efficient Offloading on IoT-Cloud Environments\",\"authors\":\"Yunsik Son, Seman Oh, Yangsun Lee\",\"doi\":\"10.14257/ijgdc.2018.11.7.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The IoT-Cloud virtual machine system is a cloud-based execution solution for IoT devices with offloading techniques that delegate tasks requiring high computing power from low-performance IoT devices to a high-performance cloud environment as a service. The IoT devices with the IoT-Cloud virtual machine system can perform complex tasks using the computing power of high-performance cloud. The offloading technique can reduce the execution performance depending on the workload of the IoT devices and the clouds. Therefore, it is necessary to decide offloading execution considering the workload of the IoT devices and the clouds. In this paper, CPU utilization trend, which is one of the workload indices, is predicted through deep learning in order to decide offloading execution considering the workload of the IoT devices and clouds. In this paper, we present four CPU usage models and introduce a technique for predicting server load based on hybrid deep neural network. The predicted CPU utilization trend is indicative of future CPU utilization information and is therefore an indicator for offloading execution decisions. Through experiments, we confirmed that the proposed method estimates the load of the model very similar, and it can apply the offloading adaptively according to the load of the server.\",\"PeriodicalId\":46000,\"journal\":{\"name\":\"International Journal of Grid and Distributed Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Grid and Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14257/ijgdc.2018.11.7.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Grid and Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14257/ijgdc.2018.11.7.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hybrid Deep Neural Network based Performance Estimation Method for Efficient Offloading on IoT-Cloud Environments
The IoT-Cloud virtual machine system is a cloud-based execution solution for IoT devices with offloading techniques that delegate tasks requiring high computing power from low-performance IoT devices to a high-performance cloud environment as a service. The IoT devices with the IoT-Cloud virtual machine system can perform complex tasks using the computing power of high-performance cloud. The offloading technique can reduce the execution performance depending on the workload of the IoT devices and the clouds. Therefore, it is necessary to decide offloading execution considering the workload of the IoT devices and the clouds. In this paper, CPU utilization trend, which is one of the workload indices, is predicted through deep learning in order to decide offloading execution considering the workload of the IoT devices and clouds. In this paper, we present four CPU usage models and introduce a technique for predicting server load based on hybrid deep neural network. The predicted CPU utilization trend is indicative of future CPU utilization information and is therefore an indicator for offloading execution decisions. Through experiments, we confirmed that the proposed method estimates the load of the model very similar, and it can apply the offloading adaptively according to the load of the server.
期刊介绍:
IJGDC aims to facilitate and support research related to control and automation technology and its applications. Our Journal provides a chance for academic and industry professionals to discuss recent progress in the area of control and automation. To bridge the gap of users who do not have access to major databases where one should pay for every downloaded article; this online publication platform is open to all readers as part of our commitment to global scientific society. Journal Topics: -Architectures and Fabrics -Autonomic and Adaptive Systems -Cluster and Grid Integration -Creation and Management of Virtual Enterprises and Organizations -Dependable and Survivable Distributed Systems -Distributed and Large-Scale Data Access and Management -Distributed Multimedia Systems -Distributed Trust Management -eScience and eBusiness Applications -Fuzzy Algorithm -Grid Economy and Business Models -Histogram Methodology -Image or Speech Filtering -Image or Speech Recognition -Information Services -Large-Scale Group Communication -Metadata, Ontologies, and Provenance -Middleware and Toolkits -Monitoring, Management and Organization Tools -Networking and Security -Novel Distributed Applications -Performance Measurement and Modeling -Pervasive Computing -Problem Solving Environments -Programming Models, Tools and Environments -QoS and resource management -Real-time and Embedded Systems -Security and Trust in Grid and Distributed Systems -Sensor Networks -Utility Computing on Global Grids -Web Services and Service-Oriented Architecture -Wireless and Mobile Ad Hoc Networks -Workflow and Multi-agent Systems