{"title":"使用二阶导数技术和距离无关基线校正算法的拉曼光谱恢复","authors":"A. Huzortey, B. Anderson, Alfred Owusu","doi":"10.1364/osac.432785","DOIUrl":null,"url":null,"abstract":"We report on a computational technique that recovers Raman peaks embedded in highly fluorescent contaminated spectra. The method uses a second derivative technique to identify the most intense Raman peak, and a modified Savisty Golay algorithm to filter and recover the embedded Raman peaks iteratively. This technique is an improvement on existing background removal algorithms in both performance and user objectivity.","PeriodicalId":19750,"journal":{"name":"OSA Continuum","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Raman spectra recovery using a second derivative technique and range independent baseline correction algorithm\",\"authors\":\"A. Huzortey, B. Anderson, Alfred Owusu\",\"doi\":\"10.1364/osac.432785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report on a computational technique that recovers Raman peaks embedded in highly fluorescent contaminated spectra. The method uses a second derivative technique to identify the most intense Raman peak, and a modified Savisty Golay algorithm to filter and recover the embedded Raman peaks iteratively. This technique is an improvement on existing background removal algorithms in both performance and user objectivity.\",\"PeriodicalId\":19750,\"journal\":{\"name\":\"OSA Continuum\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OSA Continuum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/osac.432785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OSA Continuum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/osac.432785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Raman spectra recovery using a second derivative technique and range independent baseline correction algorithm
We report on a computational technique that recovers Raman peaks embedded in highly fluorescent contaminated spectra. The method uses a second derivative technique to identify the most intense Raman peak, and a modified Savisty Golay algorithm to filter and recover the embedded Raman peaks iteratively. This technique is an improvement on existing background removal algorithms in both performance and user objectivity.