大型有限元计算中稀疏矩阵存储程序的改进

IF 0.5 Q4 ENGINEERING, MULTIDISCIPLINARY
Dragoljub Stevanovic, M. Topalovic, M. Zivkovic
{"title":"大型有限元计算中稀疏矩阵存储程序的改进","authors":"Dragoljub Stevanovic, M. Topalovic, M. Zivkovic","doi":"10.24874/jsscm.2021.15.01.06","DOIUrl":null,"url":null,"abstract":"Efficient memory handling is one of the key issues that engineers and programmers face in developing software for numerical analysis such as the Finite Element Method. This method operates on huge matrices that have a large number of zero coefficients which waste memory, so it is necessary to save it and to work only with non-zero coefficients using so called \"SPARSE\" matrices. Analysis of two methods used for the improvement of \"SPARSE\" matrix creation is presented in this paper and their pseudo code is given. Comparison is made on a wide range of problem sizes. Results show that \"indexing\" method is superior to \"dotting\" method both in memory usage and in elapsed time.","PeriodicalId":42945,"journal":{"name":"Journal of the Serbian Society for Computational Mechanics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IMPROVEMENT OF THE SPARSE MATRICES STORAGE ROUTINES FOR LARGE FEM CALCULATIONS\",\"authors\":\"Dragoljub Stevanovic, M. Topalovic, M. Zivkovic\",\"doi\":\"10.24874/jsscm.2021.15.01.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient memory handling is one of the key issues that engineers and programmers face in developing software for numerical analysis such as the Finite Element Method. This method operates on huge matrices that have a large number of zero coefficients which waste memory, so it is necessary to save it and to work only with non-zero coefficients using so called \\\"SPARSE\\\" matrices. Analysis of two methods used for the improvement of \\\"SPARSE\\\" matrix creation is presented in this paper and their pseudo code is given. Comparison is made on a wide range of problem sizes. Results show that \\\"indexing\\\" method is superior to \\\"dotting\\\" method both in memory usage and in elapsed time.\",\"PeriodicalId\":42945,\"journal\":{\"name\":\"Journal of the Serbian Society for Computational Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Serbian Society for Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24874/jsscm.2021.15.01.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Serbian Society for Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24874/jsscm.2021.15.01.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高效的内存处理是工程师和程序员在开发有限元法等数值分析软件时面临的关键问题之一。该方法在具有大量零系数的巨大矩阵上操作,这会浪费内存,因此有必要保存它,并且使用所谓的“稀疏”矩阵只处理非零系数。分析了两种改进“稀疏”矩阵生成的方法,给出了它们的伪代码。在大范围的问题大小上进行比较。结果表明,“索引”方法在内存使用和运行时间上都优于“点”方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IMPROVEMENT OF THE SPARSE MATRICES STORAGE ROUTINES FOR LARGE FEM CALCULATIONS
Efficient memory handling is one of the key issues that engineers and programmers face in developing software for numerical analysis such as the Finite Element Method. This method operates on huge matrices that have a large number of zero coefficients which waste memory, so it is necessary to save it and to work only with non-zero coefficients using so called "SPARSE" matrices. Analysis of two methods used for the improvement of "SPARSE" matrix creation is presented in this paper and their pseudo code is given. Comparison is made on a wide range of problem sizes. Results show that "indexing" method is superior to "dotting" method both in memory usage and in elapsed time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信