与线性正则傅里叶-雅可比变换相关的广义平移和卷积

IF 0.7 3区 数学 Q2 MATHEMATICS
Abdellatif Akhlidj, Fatima Elgadiri, Afaf Dahani
{"title":"与线性正则傅里叶-雅可比变换相关的广义平移和卷积","authors":"Abdellatif Akhlidj, Fatima Elgadiri, Afaf Dahani","doi":"10.1080/10652469.2023.2208725","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the Canonical Fourier-Jacobi transform, which is a generalization of Fractional Fourier-Bessel transform. We define and study the translation operator and we also derive the convolution product related to the canonical Fourier-Bessel transform. Some important properties are established.","PeriodicalId":54972,"journal":{"name":"Integral Transforms and Special Functions","volume":"34 1","pages":"799 - 812"},"PeriodicalIF":0.7000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized translation and convolution associated to the linear canonical Fourier–Jacobi transform\",\"authors\":\"Abdellatif Akhlidj, Fatima Elgadiri, Afaf Dahani\",\"doi\":\"10.1080/10652469.2023.2208725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce the Canonical Fourier-Jacobi transform, which is a generalization of Fractional Fourier-Bessel transform. We define and study the translation operator and we also derive the convolution product related to the canonical Fourier-Bessel transform. Some important properties are established.\",\"PeriodicalId\":54972,\"journal\":{\"name\":\"Integral Transforms and Special Functions\",\"volume\":\"34 1\",\"pages\":\"799 - 812\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integral Transforms and Special Functions\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10652469.2023.2208725\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integral Transforms and Special Functions","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10652469.2023.2208725","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文引入正则傅里叶-雅可比变换,它是分数阶傅里叶-贝塞尔变换的推广。我们定义并研究了平移算子,并推导了正则傅里叶-贝塞尔变换的卷积积。建立了一些重要的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized translation and convolution associated to the linear canonical Fourier–Jacobi transform
In this paper, we introduce the Canonical Fourier-Jacobi transform, which is a generalization of Fractional Fourier-Bessel transform. We define and study the translation operator and we also derive the convolution product related to the canonical Fourier-Bessel transform. Some important properties are established.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
20.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: Integral Transforms and Special Functions belongs to the basic subjects of mathematical analysis, the theory of differential and integral equations, approximation theory, and to many other areas of pure and applied mathematics. Although centuries old, these subjects are under intense development, for use in pure and applied mathematics, physics, engineering and computer science. This stimulates continuous interest for researchers in these fields. The aim of Integral Transforms and Special Functions is to foster further growth by providing a means for the publication of important research on all aspects of the subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信