{"title":"关于阿贝尔变积的Mumford - Tate猜想","authors":"J. Commelin","doi":"10.14231/ag-2019-028","DOIUrl":null,"url":null,"abstract":"Let $X$ be a smooth projective variety over a finitely generated field $K$ of characteristic~$0$ and fix an embedding $K \\subset \\mathbb{C}$. The Mumford--Tate conjecture is a precise way of saying that certain extra structure on the $\\ell$-adic \\'etale cohomology groups of~$X$ (namely, a Galois representation) and certain extra structure on the singular cohomology groups of~$X$ (namely, a Hodge structure) convey the same information. \nThe main result of this paper says that if $A_1$ and~$A_2$ are abelian varieties (or abelian motives) over~$K$, and the Mumford--Tate conjecture holds for both~$A_1$ and~$A_2$, then it holds for $A_1 \\times A_2$. These results do not depend on the embedding $K \\subset \\CC$.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"The Mumford�Tate conjecture for products of abelian varieties\",\"authors\":\"J. Commelin\",\"doi\":\"10.14231/ag-2019-028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X$ be a smooth projective variety over a finitely generated field $K$ of characteristic~$0$ and fix an embedding $K \\\\subset \\\\mathbb{C}$. The Mumford--Tate conjecture is a precise way of saying that certain extra structure on the $\\\\ell$-adic \\\\'etale cohomology groups of~$X$ (namely, a Galois representation) and certain extra structure on the singular cohomology groups of~$X$ (namely, a Hodge structure) convey the same information. \\nThe main result of this paper says that if $A_1$ and~$A_2$ are abelian varieties (or abelian motives) over~$K$, and the Mumford--Tate conjecture holds for both~$A_1$ and~$A_2$, then it holds for $A_1 \\\\times A_2$. These results do not depend on the embedding $K \\\\subset \\\\CC$.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2018-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/ag-2019-028\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2019-028","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The Mumford�Tate conjecture for products of abelian varieties
Let $X$ be a smooth projective variety over a finitely generated field $K$ of characteristic~$0$ and fix an embedding $K \subset \mathbb{C}$. The Mumford--Tate conjecture is a precise way of saying that certain extra structure on the $\ell$-adic \'etale cohomology groups of~$X$ (namely, a Galois representation) and certain extra structure on the singular cohomology groups of~$X$ (namely, a Hodge structure) convey the same information.
The main result of this paper says that if $A_1$ and~$A_2$ are abelian varieties (or abelian motives) over~$K$, and the Mumford--Tate conjecture holds for both~$A_1$ and~$A_2$, then it holds for $A_1 \times A_2$. These results do not depend on the embedding $K \subset \CC$.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.