关于阿贝尔变积的Mumford - Tate猜想

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
J. Commelin
{"title":"关于阿贝尔变积的Mumford - Tate猜想","authors":"J. Commelin","doi":"10.14231/ag-2019-028","DOIUrl":null,"url":null,"abstract":"Let $X$ be a smooth projective variety over a finitely generated field $K$ of characteristic~$0$ and fix an embedding $K \\subset \\mathbb{C}$. The Mumford--Tate conjecture is a precise way of saying that certain extra structure on the $\\ell$-adic \\'etale cohomology groups of~$X$ (namely, a Galois representation) and certain extra structure on the singular cohomology groups of~$X$ (namely, a Hodge structure) convey the same information. \nThe main result of this paper says that if $A_1$ and~$A_2$ are abelian varieties (or abelian motives) over~$K$, and the Mumford--Tate conjecture holds for both~$A_1$ and~$A_2$, then it holds for $A_1 \\times A_2$. These results do not depend on the embedding $K \\subset \\CC$.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"The Mumford�Tate conjecture for products of abelian varieties\",\"authors\":\"J. Commelin\",\"doi\":\"10.14231/ag-2019-028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X$ be a smooth projective variety over a finitely generated field $K$ of characteristic~$0$ and fix an embedding $K \\\\subset \\\\mathbb{C}$. The Mumford--Tate conjecture is a precise way of saying that certain extra structure on the $\\\\ell$-adic \\\\'etale cohomology groups of~$X$ (namely, a Galois representation) and certain extra structure on the singular cohomology groups of~$X$ (namely, a Hodge structure) convey the same information. \\nThe main result of this paper says that if $A_1$ and~$A_2$ are abelian varieties (or abelian motives) over~$K$, and the Mumford--Tate conjecture holds for both~$A_1$ and~$A_2$, then it holds for $A_1 \\\\times A_2$. These results do not depend on the embedding $K \\\\subset \\\\CC$.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2018-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/ag-2019-028\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2019-028","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 15

摘要

设$X$是特征为~$0$的有限生成域$K$上的光滑射影变,并固定一个嵌入$K \子集\mathbb{C}$。芒福德-泰特猜想是一个精确的说法,某些额外的结构\ l形进\美元的层上同调群~ X美元(也就是说,伽罗瓦表示)和某些额外的结构奇异上同调群~ X美元霍奇(即结构)传达同样的信息。本文的主要结果表明,如果$A_1$和~$A_2$是~$K$上的阿贝尔变量(或阿贝尔动机),并且对于~$A_1$和~$A_2$ Mumford—Tate猜想成立,那么对于$A_1 \乘以A_2$也成立。这些结果不依赖于嵌入$K \子集\CC$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Mumford�Tate conjecture for products of abelian varieties
Let $X$ be a smooth projective variety over a finitely generated field $K$ of characteristic~$0$ and fix an embedding $K \subset \mathbb{C}$. The Mumford--Tate conjecture is a precise way of saying that certain extra structure on the $\ell$-adic \'etale cohomology groups of~$X$ (namely, a Galois representation) and certain extra structure on the singular cohomology groups of~$X$ (namely, a Hodge structure) convey the same information. The main result of this paper says that if $A_1$ and~$A_2$ are abelian varieties (or abelian motives) over~$K$, and the Mumford--Tate conjecture holds for both~$A_1$ and~$A_2$, then it holds for $A_1 \times A_2$. These results do not depend on the embedding $K \subset \CC$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信