不完全观测点过程的非齐次隐半马尔可夫模型

Pub Date : 2022-09-18 DOI:10.1007/s10463-022-00843-5
Amina Shahzadi, Ting Wang, Mark Bebbington, Matthew Parry
{"title":"不完全观测点过程的非齐次隐半马尔可夫模型","authors":"Amina Shahzadi,&nbsp;Ting Wang,&nbsp;Mark Bebbington,&nbsp;Matthew Parry","doi":"10.1007/s10463-022-00843-5","DOIUrl":null,"url":null,"abstract":"<div><p>A general class of inhomogeneous hidden semi-Markov models (IHSMMs) is proposed for modelling partially observed processes that do not necessarily behave in a stationary and memoryless manner. The key feature of the proposed model is that the sojourn times of the states in the semi-Markov chain are time-dependent, making it an inhomogeneous semi-Markov chain. Conjectured consistency of the parameter estimators is checked by simulation study using direct numerical optimization of the log-likelihood function. The proposed models are applied to a global volcanic eruption catalogue to investigate the time-dependent incompleteness of the record by introducing a particular case of IHSMMs with time-dependent shifted Poisson state durations and a renewal process as the observed process. The Akaike Information Criterion and residual analysis are used to choose the best model. The selected IHSMM provides useful insights into the completeness of the global record of volcanic eruptions, demonstrating the effectiveness of this method.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inhomogeneous hidden semi-Markov models for incompletely observed point processes\",\"authors\":\"Amina Shahzadi,&nbsp;Ting Wang,&nbsp;Mark Bebbington,&nbsp;Matthew Parry\",\"doi\":\"10.1007/s10463-022-00843-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A general class of inhomogeneous hidden semi-Markov models (IHSMMs) is proposed for modelling partially observed processes that do not necessarily behave in a stationary and memoryless manner. The key feature of the proposed model is that the sojourn times of the states in the semi-Markov chain are time-dependent, making it an inhomogeneous semi-Markov chain. Conjectured consistency of the parameter estimators is checked by simulation study using direct numerical optimization of the log-likelihood function. The proposed models are applied to a global volcanic eruption catalogue to investigate the time-dependent incompleteness of the record by introducing a particular case of IHSMMs with time-dependent shifted Poisson state durations and a renewal process as the observed process. The Akaike Information Criterion and residual analysis are used to choose the best model. The selected IHSMM provides useful insights into the completeness of the global record of volcanic eruptions, demonstrating the effectiveness of this method.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10463-022-00843-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-022-00843-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一类一般的非齐次隐半马尔可夫模型(IHSMMs),用于模拟部分观察到的过程,这些过程不一定以平稳和无记忆的方式表现。该模型的主要特征是半马尔可夫链中状态的停留时间与时间相关,使其成为非齐次半马尔可夫链。利用对数似然函数的直接数值优化,通过仿真研究验证了参数估计量的推测一致性。将所提出的模型应用于全球火山喷发目录,通过引入具有随时间变化的泊松状态持续时间和更新过程的ihsmm的特定案例来研究记录的时间依赖性不完全性。利用赤池信息准则和残差分析选择最佳模型。所选的IHSMM对全球火山爆发记录的完整性提供了有用的见解,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Inhomogeneous hidden semi-Markov models for incompletely observed point processes

分享
查看原文
Inhomogeneous hidden semi-Markov models for incompletely observed point processes

A general class of inhomogeneous hidden semi-Markov models (IHSMMs) is proposed for modelling partially observed processes that do not necessarily behave in a stationary and memoryless manner. The key feature of the proposed model is that the sojourn times of the states in the semi-Markov chain are time-dependent, making it an inhomogeneous semi-Markov chain. Conjectured consistency of the parameter estimators is checked by simulation study using direct numerical optimization of the log-likelihood function. The proposed models are applied to a global volcanic eruption catalogue to investigate the time-dependent incompleteness of the record by introducing a particular case of IHSMMs with time-dependent shifted Poisson state durations and a renewal process as the observed process. The Akaike Information Criterion and residual analysis are used to choose the best model. The selected IHSMM provides useful insights into the completeness of the global record of volcanic eruptions, demonstrating the effectiveness of this method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信