焊接热输入对Cr-Mo钢棒TIG焊接力学性能影响的表征

R. Adewuyi, J. Aweda
{"title":"焊接热输入对Cr-Mo钢棒TIG焊接力学性能影响的表征","authors":"R. Adewuyi, J. Aweda","doi":"10.36868/ejmse.2021.06.04.192","DOIUrl":null,"url":null,"abstract":"Welding as an energy-consuming process is inevitable as-welded joint can be subject to various loads without failure. Therefore, this paper presents the welding thermal cycle of Cr-Mo steel bar (ASTM A304) of dimensions 100 by 50 and various thicknesses of 5, 10- and 15-mm. Pure tungsten with 2% thoriated TIG electrodes sizes 1.6 mm X 175 mm, 2.4 mm X 175 mm, and 3.2 mm X 175 were used without filler materials for the welding process. A double V-groove weld joint, with a moving heat source, was employed to determine the temperature fields and transformation in the single-pass butt-welded joint. A calibration process was attached at each point of interest using a datalogger type K-type thermocouple 3-channel–LU-MTM-380SD during the welding process on the Cr-Mo steel bar. The results showed that the welding temperature became higher at the welding centreline and decreased towards the edges of the bar. An indication that a weld thermal cycle is a veritable tool, a function of heat input to access likely consequence of the welding process at both welded and parent metal portions of steel bar. Design of Experiment using Taguchi L9 orthogonal array matrix L9(3^4), Factors:4 and Runs:18 in Minitab 17 Taguchi Design Method that suited the experimental method used. Taguchi’s L9 orthogonal array to restrict the number of experimental runs was used for the design of the experiment (DOE). Mechanical and Microstructure tests were carried out on the samples to investigate the effect of weld heat input. The hardness test result showed that samples C15 and D15 have the highest hardness values 165.0HV and 164.0HV respectively at Base metal (BM) 20mm away from weld centreline and it was also observed that samples C15 and D15 have the highest impact values 48.53J and 48.7J respectively. The microstructure of the C15 at the weld zone WZ, which consists majorly of pearlite and less ferrite, BM shows the appearance of alpha ferrite and pearlite and heat-affected zone HAZ consists majorly of pearlite and a very small proportion of ferrite resulted in increased hardness and impact values at the HAZ.","PeriodicalId":32608,"journal":{"name":"European Journal of Materials Science and Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CHARACTERIZATION OF WELD HEAT INPUT EFFECTS ON MECHANICAL PROPERTIES OF Cr-Mo STEEL BAR USING TIG WELDING PROCESS\",\"authors\":\"R. Adewuyi, J. Aweda\",\"doi\":\"10.36868/ejmse.2021.06.04.192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Welding as an energy-consuming process is inevitable as-welded joint can be subject to various loads without failure. Therefore, this paper presents the welding thermal cycle of Cr-Mo steel bar (ASTM A304) of dimensions 100 by 50 and various thicknesses of 5, 10- and 15-mm. Pure tungsten with 2% thoriated TIG electrodes sizes 1.6 mm X 175 mm, 2.4 mm X 175 mm, and 3.2 mm X 175 were used without filler materials for the welding process. A double V-groove weld joint, with a moving heat source, was employed to determine the temperature fields and transformation in the single-pass butt-welded joint. A calibration process was attached at each point of interest using a datalogger type K-type thermocouple 3-channel–LU-MTM-380SD during the welding process on the Cr-Mo steel bar. The results showed that the welding temperature became higher at the welding centreline and decreased towards the edges of the bar. An indication that a weld thermal cycle is a veritable tool, a function of heat input to access likely consequence of the welding process at both welded and parent metal portions of steel bar. Design of Experiment using Taguchi L9 orthogonal array matrix L9(3^4), Factors:4 and Runs:18 in Minitab 17 Taguchi Design Method that suited the experimental method used. Taguchi’s L9 orthogonal array to restrict the number of experimental runs was used for the design of the experiment (DOE). Mechanical and Microstructure tests were carried out on the samples to investigate the effect of weld heat input. The hardness test result showed that samples C15 and D15 have the highest hardness values 165.0HV and 164.0HV respectively at Base metal (BM) 20mm away from weld centreline and it was also observed that samples C15 and D15 have the highest impact values 48.53J and 48.7J respectively. The microstructure of the C15 at the weld zone WZ, which consists majorly of pearlite and less ferrite, BM shows the appearance of alpha ferrite and pearlite and heat-affected zone HAZ consists majorly of pearlite and a very small proportion of ferrite resulted in increased hardness and impact values at the HAZ.\",\"PeriodicalId\":32608,\"journal\":{\"name\":\"European Journal of Materials Science and Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Materials Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36868/ejmse.2021.06.04.192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36868/ejmse.2021.06.04.192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

焊接作为一个耗能过程是不可避免的,因为焊接接头可以承受各种载荷而不会失效。因此,本文介绍了尺寸为100×50、不同厚度为5、10和15mm的铬钼钢筋(ASTM A304)的焊接热循环。在没有填充材料的情况下,使用具有尺寸为1.6mm X 175mm、2.4mm X 175m和3.2mm X 175的2%镀钍TIG电极的纯钨进行焊接工艺。采用移动热源的双V形坡口焊接接头,测定了单程对接接头的温度场和相变。在Cr-Mo钢筋的焊接过程中,使用数据记录器类型K型热电偶3通道–LU-MTM-380SD在每个感兴趣的点上附加校准过程。结果表明,焊接温度在焊接中心线处变高,并向棒材边缘降低。表明焊接热循环是一种真正的工具,是热输入的函数,可以获得钢筋焊接和母材部分焊接过程的可能结果。使用Minitab 17田口设计方法中的田口L9正交阵列矩阵L9(3^4),因子:4和运行次数:18进行实验设计,该方法适合所使用的实验方法。实验(DOE)的设计使用了田口L9正交阵列来限制实验运行的次数。对试样进行了力学和微观结构测试,以研究焊接热输入的影响。硬度测试结果表明,在距离焊缝中心线20mm的母材(BM)处,样品C15和D15分别具有最高的硬度值165.0HV和164.0HV,并且还观察到样品C15和D15分别具有最大的冲击值48.53J和48.7J。焊接区WZ处C15的微观结构主要由珠光体和少量铁素体组成,BM显示出α铁素体和珠光体的外观,热影响区HAZ主要由珠光体组成,铁素体的比例很小,导致HAZ的硬度和冲击值增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CHARACTERIZATION OF WELD HEAT INPUT EFFECTS ON MECHANICAL PROPERTIES OF Cr-Mo STEEL BAR USING TIG WELDING PROCESS
Welding as an energy-consuming process is inevitable as-welded joint can be subject to various loads without failure. Therefore, this paper presents the welding thermal cycle of Cr-Mo steel bar (ASTM A304) of dimensions 100 by 50 and various thicknesses of 5, 10- and 15-mm. Pure tungsten with 2% thoriated TIG electrodes sizes 1.6 mm X 175 mm, 2.4 mm X 175 mm, and 3.2 mm X 175 were used without filler materials for the welding process. A double V-groove weld joint, with a moving heat source, was employed to determine the temperature fields and transformation in the single-pass butt-welded joint. A calibration process was attached at each point of interest using a datalogger type K-type thermocouple 3-channel–LU-MTM-380SD during the welding process on the Cr-Mo steel bar. The results showed that the welding temperature became higher at the welding centreline and decreased towards the edges of the bar. An indication that a weld thermal cycle is a veritable tool, a function of heat input to access likely consequence of the welding process at both welded and parent metal portions of steel bar. Design of Experiment using Taguchi L9 orthogonal array matrix L9(3^4), Factors:4 and Runs:18 in Minitab 17 Taguchi Design Method that suited the experimental method used. Taguchi’s L9 orthogonal array to restrict the number of experimental runs was used for the design of the experiment (DOE). Mechanical and Microstructure tests were carried out on the samples to investigate the effect of weld heat input. The hardness test result showed that samples C15 and D15 have the highest hardness values 165.0HV and 164.0HV respectively at Base metal (BM) 20mm away from weld centreline and it was also observed that samples C15 and D15 have the highest impact values 48.53J and 48.7J respectively. The microstructure of the C15 at the weld zone WZ, which consists majorly of pearlite and less ferrite, BM shows the appearance of alpha ferrite and pearlite and heat-affected zone HAZ consists majorly of pearlite and a very small proportion of ferrite resulted in increased hardness and impact values at the HAZ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
21
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信