将West的堆栈排序图提升为分区图

IF 0.7 3区 数学 Q2 MATHEMATICS
John M. Campbell
{"title":"将West的堆栈排序图提升为分区图","authors":"John M. Campbell","doi":"10.2140/pjm.2023.324.227","DOIUrl":null,"url":null,"abstract":"We introduce a lifting of West's stack-sorting map $s$ to partition diagrams, which are combinatorial objects indexing bases of partition algebras. Our lifting $\\mathscr{S}$ of $s$ is such that $\\mathscr{S}$ behaves in the same way as $s$ when restricted to diagram basis elements in the order-$n$ symmetric group algebra as a diagram subalgebra of the partition algebra $\\mathscr{P}_{n}^{\\xi}$. We then introduce a lifting of the notion of $1$-stack-sortability, using our lifting of $s$. By direct analogy with Knuth's famous result that a permutation is $1$-stack-sortable if and only if it avoids the pattern $231$, we prove a related pattern-avoidance property for partition diagrams, as opposed to permutations, according to what we refer to as stretch-stack-sortability.","PeriodicalId":54651,"journal":{"name":"Pacific Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A lift of West’s stack-sorting map to partition\\ndiagrams\",\"authors\":\"John M. Campbell\",\"doi\":\"10.2140/pjm.2023.324.227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a lifting of West's stack-sorting map $s$ to partition diagrams, which are combinatorial objects indexing bases of partition algebras. Our lifting $\\\\mathscr{S}$ of $s$ is such that $\\\\mathscr{S}$ behaves in the same way as $s$ when restricted to diagram basis elements in the order-$n$ symmetric group algebra as a diagram subalgebra of the partition algebra $\\\\mathscr{P}_{n}^{\\\\xi}$. We then introduce a lifting of the notion of $1$-stack-sortability, using our lifting of $s$. By direct analogy with Knuth's famous result that a permutation is $1$-stack-sortable if and only if it avoids the pattern $231$, we prove a related pattern-avoidance property for partition diagrams, as opposed to permutations, according to what we refer to as stretch-stack-sortability.\",\"PeriodicalId\":54651,\"journal\":{\"name\":\"Pacific Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2023.324.227\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2023.324.227","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们将West的堆栈排序映射$s$提升到分区图,分区图是分区代数的组合对象索引基。我们将$ $ S $的$\mathscr{S}$提升,使得$ $\mathscr{S}$的行为与$ $ S $在作为分区代数$ $\mathscr{P}_{n}^{\xi}$的图子代数的序-$n$对称群代数中的图基元素的行为相同。然后我们引入$1$-堆栈可排序性的提升概念,使用我们的$s$提升。通过直接类比Knuth的著名结果,即排列是$1$-堆栈可排序的,当且仅当它避免了模式$231$,我们证明了与排列相反的分区图的相关模式避免性质,根据我们所说的拉伸堆栈可排序性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A lift of West’s stack-sorting map to partition diagrams
We introduce a lifting of West's stack-sorting map $s$ to partition diagrams, which are combinatorial objects indexing bases of partition algebras. Our lifting $\mathscr{S}$ of $s$ is such that $\mathscr{S}$ behaves in the same way as $s$ when restricted to diagram basis elements in the order-$n$ symmetric group algebra as a diagram subalgebra of the partition algebra $\mathscr{P}_{n}^{\xi}$. We then introduce a lifting of the notion of $1$-stack-sortability, using our lifting of $s$. By direct analogy with Knuth's famous result that a permutation is $1$-stack-sortable if and only if it avoids the pattern $231$, we prove a related pattern-avoidance property for partition diagrams, as opposed to permutations, according to what we refer to as stretch-stack-sortability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
93
审稿时长
4-8 weeks
期刊介绍: Founded in 1951, PJM has published mathematics research for more than 60 years. PJM is run by mathematicians from the Pacific Rim. PJM aims to publish high-quality articles in all branches of mathematics, at low cost to libraries and individuals. The Pacific Journal of Mathematics is incorporated as a 501(c)(3) California nonprofit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信