{"title":"基于质心埃尔米特插值的静电粒子相互作用树码","authors":"R. Krasny, Lei Wang","doi":"10.1515/cmb-2019-0006","DOIUrl":null,"url":null,"abstract":"Abstract A particle-cluster treecode based on barycentric Hermite interpolation is presented for fast summation of electrostatic particle interactions in 3D. The interpolation nodes are Chebyshev points of the 2nd kind in each cluster. It is noted that barycentric Hermite interpolation is scale-invariant in a certain sense that promotes the treecode’s efficiency. Numerical results for the Coulomb and screened Coulomb potentials show that the treecode run time scales like O(N log N), where N is the number of particles in the system. The advantage of the barycentric Hermite treecode is demonstrated in comparison with treecodes based on Taylor approximation and barycentric Lagrange interpolation.","PeriodicalId":34018,"journal":{"name":"Computational and Mathematical Biophysics","volume":"7 1","pages":"73 - 84"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/cmb-2019-0006","citationCount":"7","resultStr":"{\"title\":\"A treecode based on barycentric Hermite interpolation for electrostatic particle interactions\",\"authors\":\"R. Krasny, Lei Wang\",\"doi\":\"10.1515/cmb-2019-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A particle-cluster treecode based on barycentric Hermite interpolation is presented for fast summation of electrostatic particle interactions in 3D. The interpolation nodes are Chebyshev points of the 2nd kind in each cluster. It is noted that barycentric Hermite interpolation is scale-invariant in a certain sense that promotes the treecode’s efficiency. Numerical results for the Coulomb and screened Coulomb potentials show that the treecode run time scales like O(N log N), where N is the number of particles in the system. The advantage of the barycentric Hermite treecode is demonstrated in comparison with treecodes based on Taylor approximation and barycentric Lagrange interpolation.\",\"PeriodicalId\":34018,\"journal\":{\"name\":\"Computational and Mathematical Biophysics\",\"volume\":\"7 1\",\"pages\":\"73 - 84\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/cmb-2019-0006\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cmb-2019-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cmb-2019-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
A treecode based on barycentric Hermite interpolation for electrostatic particle interactions
Abstract A particle-cluster treecode based on barycentric Hermite interpolation is presented for fast summation of electrostatic particle interactions in 3D. The interpolation nodes are Chebyshev points of the 2nd kind in each cluster. It is noted that barycentric Hermite interpolation is scale-invariant in a certain sense that promotes the treecode’s efficiency. Numerical results for the Coulomb and screened Coulomb potentials show that the treecode run time scales like O(N log N), where N is the number of particles in the system. The advantage of the barycentric Hermite treecode is demonstrated in comparison with treecodes based on Taylor approximation and barycentric Lagrange interpolation.