基于质心埃尔米特插值的静电粒子相互作用树码

Q2 Mathematics
R. Krasny, Lei Wang
{"title":"基于质心埃尔米特插值的静电粒子相互作用树码","authors":"R. Krasny, Lei Wang","doi":"10.1515/cmb-2019-0006","DOIUrl":null,"url":null,"abstract":"Abstract A particle-cluster treecode based on barycentric Hermite interpolation is presented for fast summation of electrostatic particle interactions in 3D. The interpolation nodes are Chebyshev points of the 2nd kind in each cluster. It is noted that barycentric Hermite interpolation is scale-invariant in a certain sense that promotes the treecode’s efficiency. Numerical results for the Coulomb and screened Coulomb potentials show that the treecode run time scales like O(N log N), where N is the number of particles in the system. The advantage of the barycentric Hermite treecode is demonstrated in comparison with treecodes based on Taylor approximation and barycentric Lagrange interpolation.","PeriodicalId":34018,"journal":{"name":"Computational and Mathematical Biophysics","volume":"7 1","pages":"73 - 84"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/cmb-2019-0006","citationCount":"7","resultStr":"{\"title\":\"A treecode based on barycentric Hermite interpolation for electrostatic particle interactions\",\"authors\":\"R. Krasny, Lei Wang\",\"doi\":\"10.1515/cmb-2019-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A particle-cluster treecode based on barycentric Hermite interpolation is presented for fast summation of electrostatic particle interactions in 3D. The interpolation nodes are Chebyshev points of the 2nd kind in each cluster. It is noted that barycentric Hermite interpolation is scale-invariant in a certain sense that promotes the treecode’s efficiency. Numerical results for the Coulomb and screened Coulomb potentials show that the treecode run time scales like O(N log N), where N is the number of particles in the system. The advantage of the barycentric Hermite treecode is demonstrated in comparison with treecodes based on Taylor approximation and barycentric Lagrange interpolation.\",\"PeriodicalId\":34018,\"journal\":{\"name\":\"Computational and Mathematical Biophysics\",\"volume\":\"7 1\",\"pages\":\"73 - 84\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/cmb-2019-0006\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cmb-2019-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cmb-2019-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 7

摘要

摘要提出了一种基于重心Hermite插值的粒子簇树码,用于三维静电粒子相互作用的快速求和。插值节点是每个簇中的第二类切比雪夫点。值得注意的是,重心Hermite插值在一定意义上是尺度不变的,这提高了树码的效率。库仑势和屏蔽库仑势的数值结果表明,树码的运行时间尺度类似于O(N log N),其中N是系统中粒子的数量。与基于Taylor近似和重心拉格朗日插值的树码相比,证明了重心Hermite树码的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A treecode based on barycentric Hermite interpolation for electrostatic particle interactions
Abstract A particle-cluster treecode based on barycentric Hermite interpolation is presented for fast summation of electrostatic particle interactions in 3D. The interpolation nodes are Chebyshev points of the 2nd kind in each cluster. It is noted that barycentric Hermite interpolation is scale-invariant in a certain sense that promotes the treecode’s efficiency. Numerical results for the Coulomb and screened Coulomb potentials show that the treecode run time scales like O(N log N), where N is the number of particles in the system. The advantage of the barycentric Hermite treecode is demonstrated in comparison with treecodes based on Taylor approximation and barycentric Lagrange interpolation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational and Mathematical Biophysics
Computational and Mathematical Biophysics Mathematics-Mathematical Physics
CiteScore
2.50
自引率
0.00%
发文量
8
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信