{"title":"指数跟踪问题中股票选择与分配的启发式方法","authors":"Codrut-Florin Ivascu","doi":"10.3233/af-200367","DOIUrl":null,"url":null,"abstract":"Index tracking is one of the most popular passive strategy in portfolio management. However, due to some practical constrains, a full replication is difficult to obtain. Many mathematical models have failed to generate good results for partial replicated portfolios, but in the last years a data driven approach began to take shape. This paper proposes three heuristic methods for both selection and allocation of the most informative stocks in an index tracking problem, respectively XGBoost, Random Forest and LASSO with stability selection. Among those, latest deep autoencoders have also been tested. All selected algorithms have outperformed the benchmarks in terms of tracking error. The empirical study has been conducted on one of the biggest financial indices in terms of number of components in three different countries, respectively Russell 1000 for the USA, FTSE 350 for the UK, and Nikkei 225 for Japan.","PeriodicalId":42207,"journal":{"name":"Algorithmic Finance","volume":"9 1","pages":"103-119"},"PeriodicalIF":0.3000,"publicationDate":"2021-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heuristic methods for stock selection and allocation in an index tracking problem\",\"authors\":\"Codrut-Florin Ivascu\",\"doi\":\"10.3233/af-200367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Index tracking is one of the most popular passive strategy in portfolio management. However, due to some practical constrains, a full replication is difficult to obtain. Many mathematical models have failed to generate good results for partial replicated portfolios, but in the last years a data driven approach began to take shape. This paper proposes three heuristic methods for both selection and allocation of the most informative stocks in an index tracking problem, respectively XGBoost, Random Forest and LASSO with stability selection. Among those, latest deep autoencoders have also been tested. All selected algorithms have outperformed the benchmarks in terms of tracking error. The empirical study has been conducted on one of the biggest financial indices in terms of number of components in three different countries, respectively Russell 1000 for the USA, FTSE 350 for the UK, and Nikkei 225 for Japan.\",\"PeriodicalId\":42207,\"journal\":{\"name\":\"Algorithmic Finance\",\"volume\":\"9 1\",\"pages\":\"103-119\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithmic Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/af-200367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmic Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/af-200367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Heuristic methods for stock selection and allocation in an index tracking problem
Index tracking is one of the most popular passive strategy in portfolio management. However, due to some practical constrains, a full replication is difficult to obtain. Many mathematical models have failed to generate good results for partial replicated portfolios, but in the last years a data driven approach began to take shape. This paper proposes three heuristic methods for both selection and allocation of the most informative stocks in an index tracking problem, respectively XGBoost, Random Forest and LASSO with stability selection. Among those, latest deep autoencoders have also been tested. All selected algorithms have outperformed the benchmarks in terms of tracking error. The empirical study has been conducted on one of the biggest financial indices in terms of number of components in three different countries, respectively Russell 1000 for the USA, FTSE 350 for the UK, and Nikkei 225 for Japan.
期刊介绍:
Algorithmic Finance is both a nascent field of study and a new high-quality academic research journal that seeks to bridge computer science and finance. It covers such applications as: High frequency and algorithmic trading Statistical arbitrage strategies Momentum and other algorithmic portfolio management Machine learning and computational financial intelligence Agent-based finance Complexity and market efficiency Algorithmic analysis of derivatives valuation Behavioral finance and investor heuristics and algorithms Applications of quantum computation to finance News analytics and automated textual analysis.