具有分数阶拉普拉斯算子和状态约束的分数阶最优控制问题的一种有效而精确的数值方法

IF 2.1 3区 数学 Q1 MATHEMATICS, APPLIED
Jiaqi Zhang, Y. Yang
{"title":"具有分数阶拉普拉斯算子和状态约束的分数阶最优控制问题的一种有效而精确的数值方法","authors":"Jiaqi Zhang, Y. Yang","doi":"10.1002/num.23056","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the numerical approximation of an optimal control problem with fractional Laplacian and state constraint in integral form based on the Caffarelli–Silvestre expansion. The first order optimality conditions of the extended optimal control problem is obtained. An enriched spectral Galerkin discrete scheme for the extended problem based on weighted Laguerre polynomials is proposed. A priori error estimate for the enriched spectral discrete scheme is proved. Numerical experiments demonstrate the effectiveness of our method and validate the theoretical results.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient and accurate numerical method for the fractional optimal control problems with fractional Laplacian and state constraint\",\"authors\":\"Jiaqi Zhang, Y. Yang\",\"doi\":\"10.1002/num.23056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the numerical approximation of an optimal control problem with fractional Laplacian and state constraint in integral form based on the Caffarelli–Silvestre expansion. The first order optimality conditions of the extended optimal control problem is obtained. An enriched spectral Galerkin discrete scheme for the extended problem based on weighted Laguerre polynomials is proposed. A priori error estimate for the enriched spectral discrete scheme is proved. Numerical experiments demonstrate the effectiveness of our method and validate the theoretical results.\",\"PeriodicalId\":19443,\"journal\":{\"name\":\"Numerical Methods for Partial Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Methods for Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23056\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23056","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文基于Caffarelli-Silvestre展开,研究了一类积分形式的分数阶拉普拉斯状态约束最优控制问题的数值逼近。得到了扩展最优控制问题的一阶最优性条件。提出了一种基于加权拉盖尔多项式的扩展问题的富谱伽辽金离散格式。证明了富谱离散格式的先验误差估计。数值实验验证了该方法的有效性,并验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient and accurate numerical method for the fractional optimal control problems with fractional Laplacian and state constraint
In this paper, we investigate the numerical approximation of an optimal control problem with fractional Laplacian and state constraint in integral form based on the Caffarelli–Silvestre expansion. The first order optimality conditions of the extended optimal control problem is obtained. An enriched spectral Galerkin discrete scheme for the extended problem based on weighted Laguerre polynomials is proposed. A priori error estimate for the enriched spectral discrete scheme is proved. Numerical experiments demonstrate the effectiveness of our method and validate the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
2.60%
发文量
81
审稿时长
9 months
期刊介绍: An international journal that aims to cover research into the development and analysis of new methods for the numerical solution of partial differential equations, it is intended that it be readily readable by and directed to a broad spectrum of researchers into numerical methods for partial differential equations throughout science and engineering. The numerical methods and techniques themselves are emphasized rather than the specific applications. The Journal seeks to be interdisciplinary, while retaining the common thread of applied numerical analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信