圆柱形lsamvy过程的辐射化

IF 0.3 Q4 STATISTICS & PROBABILITY
A. E. Alvarado-Solano
{"title":"圆柱形lsamvy过程的辐射化","authors":"A. E. Alvarado-Solano","doi":"10.1515/rose-2023-2010","DOIUrl":null,"url":null,"abstract":"Abstract In this work, we present a direct proof about radonification of a cylindrical Lévy process. The radonification technique has been very useful to define a genuine stochastic process starting from a cylindrical process; this is possible thanks to the Hilbert–Schmidt operators. With this work, we want to propose a self-contained simple proof to those who are not familiar with this method and also present our result which is to apply the radonification method to the case of a cylindrical Lévy process.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"31 1","pages":"199 - 204"},"PeriodicalIF":0.3000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radonification of a cylindrical Lévy process\",\"authors\":\"A. E. Alvarado-Solano\",\"doi\":\"10.1515/rose-2023-2010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work, we present a direct proof about radonification of a cylindrical Lévy process. The radonification technique has been very useful to define a genuine stochastic process starting from a cylindrical process; this is possible thanks to the Hilbert–Schmidt operators. With this work, we want to propose a self-contained simple proof to those who are not familiar with this method and also present our result which is to apply the radonification method to the case of a cylindrical Lévy process.\",\"PeriodicalId\":43421,\"journal\":{\"name\":\"Random Operators and Stochastic Equations\",\"volume\":\"31 1\",\"pages\":\"199 - 204\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Operators and Stochastic Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rose-2023-2010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2023-2010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们给出了一个关于圆柱形lsamvy过程辐射化的直接证明。放射技术对于定义一个真正的随机过程非常有用,从一个圆柱形过程开始;这要归功于希尔伯特-施密特算子。通过这项工作,我们想向那些不熟悉这种方法的人提出一个独立的简单证明,并提出我们的结果,即将辐射化方法应用于圆柱形lsamvy过程的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radonification of a cylindrical Lévy process
Abstract In this work, we present a direct proof about radonification of a cylindrical Lévy process. The radonification technique has been very useful to define a genuine stochastic process starting from a cylindrical process; this is possible thanks to the Hilbert–Schmidt operators. With this work, we want to propose a self-contained simple proof to those who are not familiar with this method and also present our result which is to apply the radonification method to the case of a cylindrical Lévy process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信