金融市场的迷宫式混沌建模

IF 0.3 Q4 BUSINESS, FINANCE
W. Risso
{"title":"金融市场的迷宫式混沌建模","authors":"W. Risso","doi":"10.3233/AF-190245","DOIUrl":null,"url":null,"abstract":"In the present study, a deterministic model is introduced to explain the stylized facts of financial data. The adaptation introduced by the labyrinth chaos model can reproduce phenomena such as heavy tails observed in financial returns, volatility clustering and jumps. The model is based on the assumption that many unstable stationary states arise from the interaction or feedback between financial prices. Model tests are performed, and the results show that the model generates series that reject a normal distribution of the returns and which can be represented by the GARCH model. An analysis applying symbolic dynamics shows similar behaviors in a system with three stock indices, three currency relations and three prices generated by the introduced model. We observe sequences that have not been produced by any of the three systems, suggesting that in a three-dimensional space, the paths traveled by the real series and those of the model may not be completely random.","PeriodicalId":42207,"journal":{"name":"Algorithmic Finance","volume":"8 1","pages":"57-75"},"PeriodicalIF":0.3000,"publicationDate":"2019-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/AF-190245","citationCount":"0","resultStr":"{\"title\":\"Modeling the financial market with labyrinth chaos\",\"authors\":\"W. Risso\",\"doi\":\"10.3233/AF-190245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study, a deterministic model is introduced to explain the stylized facts of financial data. The adaptation introduced by the labyrinth chaos model can reproduce phenomena such as heavy tails observed in financial returns, volatility clustering and jumps. The model is based on the assumption that many unstable stationary states arise from the interaction or feedback between financial prices. Model tests are performed, and the results show that the model generates series that reject a normal distribution of the returns and which can be represented by the GARCH model. An analysis applying symbolic dynamics shows similar behaviors in a system with three stock indices, three currency relations and three prices generated by the introduced model. We observe sequences that have not been produced by any of the three systems, suggesting that in a three-dimensional space, the paths traveled by the real series and those of the model may not be completely random.\",\"PeriodicalId\":42207,\"journal\":{\"name\":\"Algorithmic Finance\",\"volume\":\"8 1\",\"pages\":\"57-75\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3233/AF-190245\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithmic Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/AF-190245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmic Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/AF-190245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,引入确定性模型来解释财务数据的风格化事实。迷宫混沌模型引入的适应性可以再现金融收益、波动聚类和跳跃等重尾现象。该模型基于这样的假设:许多不稳定的定态是由金融价格之间的相互作用或反馈产生的。对模型进行了检验,结果表明,该模型生成的序列拒绝收益率的正态分布,可以用GARCH模型表示。应用符号动力学的分析表明,由引入的模型生成的具有三个股票指数、三个货币关系和三个价格的系统具有相似的行为。我们观察到的序列不是由这三个系统中的任何一个产生的,这表明在三维空间中,真实序列和模型的路径可能不是完全随机的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling the financial market with labyrinth chaos
In the present study, a deterministic model is introduced to explain the stylized facts of financial data. The adaptation introduced by the labyrinth chaos model can reproduce phenomena such as heavy tails observed in financial returns, volatility clustering and jumps. The model is based on the assumption that many unstable stationary states arise from the interaction or feedback between financial prices. Model tests are performed, and the results show that the model generates series that reject a normal distribution of the returns and which can be represented by the GARCH model. An analysis applying symbolic dynamics shows similar behaviors in a system with three stock indices, three currency relations and three prices generated by the introduced model. We observe sequences that have not been produced by any of the three systems, suggesting that in a three-dimensional space, the paths traveled by the real series and those of the model may not be completely random.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algorithmic Finance
Algorithmic Finance BUSINESS, FINANCE-
CiteScore
0.40
自引率
0.00%
发文量
6
期刊介绍: Algorithmic Finance is both a nascent field of study and a new high-quality academic research journal that seeks to bridge computer science and finance. It covers such applications as: High frequency and algorithmic trading Statistical arbitrage strategies Momentum and other algorithmic portfolio management Machine learning and computational financial intelligence Agent-based finance Complexity and market efficiency Algorithmic analysis of derivatives valuation Behavioral finance and investor heuristics and algorithms Applications of quantum computation to finance News analytics and automated textual analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信