图并集的k-乘积Cordial性质

IF 0.3 Q4 MATHEMATICS
K. Jeya Daisey, R. Santrin Sabibha, P. Jeyanthi, M. Youssef
{"title":"图并集的k-乘积Cordial性质","authors":"K. Jeya Daisey, R. Santrin Sabibha, P. Jeyanthi, M. Youssef","doi":"10.22342/jims.28.1.1025.1-7","DOIUrl":null,"url":null,"abstract":"Let f be a map from V (G) to {0, 1, ..., k − 1} where k is an integer, 1 ≤ k ≤ |V (G)|. For each edge uv assign the label f(u)f(v)(mod k). f is called a k-product cordial labeling if |vf (i) − vf (j)| ≤ 1, and |ef (i) − ef (j)| ≤ 1, i, j ∈ {0, 1, ..., k − 1}, where vf (x) and ef (x) denote the number of vertices and edges respectively labeled with x (x = 0, 1, ..., k − 1). In this paper, we investigate the k-product cordial behaviour of union of graphs","PeriodicalId":42206,"journal":{"name":"Journal of the Indonesian Mathematical Society","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"k-Product Cordial Behaviour of Union of Graphs\",\"authors\":\"K. Jeya Daisey, R. Santrin Sabibha, P. Jeyanthi, M. Youssef\",\"doi\":\"10.22342/jims.28.1.1025.1-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let f be a map from V (G) to {0, 1, ..., k − 1} where k is an integer, 1 ≤ k ≤ |V (G)|. For each edge uv assign the label f(u)f(v)(mod k). f is called a k-product cordial labeling if |vf (i) − vf (j)| ≤ 1, and |ef (i) − ef (j)| ≤ 1, i, j ∈ {0, 1, ..., k − 1}, where vf (x) and ef (x) denote the number of vertices and edges respectively labeled with x (x = 0, 1, ..., k − 1). In this paper, we investigate the k-product cordial behaviour of union of graphs\",\"PeriodicalId\":42206,\"journal\":{\"name\":\"Journal of the Indonesian Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indonesian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22342/jims.28.1.1025.1-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indonesian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22342/jims.28.1.1025.1-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

设f是一个从V(G)到{0,1,…,k−1}的映射,其中k是一个整数,1≤k≤|V(G)|。为每个边uv指定标签f(u)f(v)(mod k)。如果|vf(i)−vf(j)|≤1,并且|ef。本文研究了图并集的k乘积亲切性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
k-Product Cordial Behaviour of Union of Graphs
Let f be a map from V (G) to {0, 1, ..., k − 1} where k is an integer, 1 ≤ k ≤ |V (G)|. For each edge uv assign the label f(u)f(v)(mod k). f is called a k-product cordial labeling if |vf (i) − vf (j)| ≤ 1, and |ef (i) − ef (j)| ≤ 1, i, j ∈ {0, 1, ..., k − 1}, where vf (x) and ef (x) denote the number of vertices and edges respectively labeled with x (x = 0, 1, ..., k − 1). In this paper, we investigate the k-product cordial behaviour of union of graphs
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信