算术曲面上的阿德利几何,I:德列涅配对的阿德利几何和阿德利几何解释

IF 0.5 4区 数学 Q3 MATHEMATICS
Paolo Dolce
{"title":"算术曲面上的阿德利几何,I:德列涅配对的阿德利几何和阿德利几何解释","authors":"Paolo Dolce","doi":"10.1215/21562261-2022-0009","DOIUrl":null,"url":null,"abstract":"For an arithmetic surface $X\\to B=\\operatorname{Spec} O_K$ the Deligne pairing $\\left<\\,,\\,\\right>\\colon \\operatorname{Pic}(X) \\times \\operatorname{Pic}(X) \\to \\operatorname{Pic}(B)$ gives the\"schematic contribution\"to the Arakelov intersection number. We present an idelic and adelic interpretation of the Deligne pairing; this is the first crucial step for a full idelic and adelic interpretation of the Arakelov intersection number. For the idelic approach we show that the Deligne pairing can be lifted to a pairing $\\left<\\,,\\,\\right>_i:\\ker(d^1_\\times)\\times \\ker(d^1_\\times)\\to\\operatorname{Pic}(B) $, where $\\ker(d^1_\\times)$ is an important subspace of the two dimensional idelic group $\\mathbf A_X^\\times$. On the other hand, the argument for the adelic interpretation is entirely cohomological.","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2018-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adelic geometry on arithmetic surfaces, I: Idelic and adelic interpretation of the Deligne pairing\",\"authors\":\"Paolo Dolce\",\"doi\":\"10.1215/21562261-2022-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an arithmetic surface $X\\\\to B=\\\\operatorname{Spec} O_K$ the Deligne pairing $\\\\left<\\\\,,\\\\,\\\\right>\\\\colon \\\\operatorname{Pic}(X) \\\\times \\\\operatorname{Pic}(X) \\\\to \\\\operatorname{Pic}(B)$ gives the\\\"schematic contribution\\\"to the Arakelov intersection number. We present an idelic and adelic interpretation of the Deligne pairing; this is the first crucial step for a full idelic and adelic interpretation of the Arakelov intersection number. For the idelic approach we show that the Deligne pairing can be lifted to a pairing $\\\\left<\\\\,,\\\\,\\\\right>_i:\\\\ker(d^1_\\\\times)\\\\times \\\\ker(d^1_\\\\times)\\\\to\\\\operatorname{Pic}(B) $, where $\\\\ker(d^1_\\\\times)$ is an important subspace of the two dimensional idelic group $\\\\mathbf A_X^\\\\times$. On the other hand, the argument for the adelic interpretation is entirely cohomological.\",\"PeriodicalId\":49149,\"journal\":{\"name\":\"Kyoto Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyoto Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-2022-0009\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyoto Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2022-0009","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

对于算术曲面$X\to B=\operatorname{Spec}O_K$,Deligne配对$\left\colon\operatorname{Pic}。我们对Deligne配对给出了一个理想的和熟练的解释;这是对Arakelov交数进行全面理想和熟练解释的第一个关键步骤。对于理想化方法,我们证明了Deligne配对可以提升到$\left_i:\ker(d^1_\times)\times\ker(d^1 \times。另一方面,专业解释的论点完全是同调的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adelic geometry on arithmetic surfaces, I: Idelic and adelic interpretation of the Deligne pairing
For an arithmetic surface $X\to B=\operatorname{Spec} O_K$ the Deligne pairing $\left<\,,\,\right>\colon \operatorname{Pic}(X) \times \operatorname{Pic}(X) \to \operatorname{Pic}(B)$ gives the"schematic contribution"to the Arakelov intersection number. We present an idelic and adelic interpretation of the Deligne pairing; this is the first crucial step for a full idelic and adelic interpretation of the Arakelov intersection number. For the idelic approach we show that the Deligne pairing can be lifted to a pairing $\left<\,,\,\right>_i:\ker(d^1_\times)\times \ker(d^1_\times)\to\operatorname{Pic}(B) $, where $\ker(d^1_\times)$ is an important subspace of the two dimensional idelic group $\mathbf A_X^\times$. On the other hand, the argument for the adelic interpretation is entirely cohomological.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
16.70%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Kyoto Journal of Mathematics publishes original research papers at the forefront of pure mathematics, including surveys that contribute to advances in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信