{"title":"算术曲面上的阿德利几何,I:德列涅配对的阿德利几何和阿德利几何解释","authors":"Paolo Dolce","doi":"10.1215/21562261-2022-0009","DOIUrl":null,"url":null,"abstract":"For an arithmetic surface $X\\to B=\\operatorname{Spec} O_K$ the Deligne pairing $\\left<\\,,\\,\\right>\\colon \\operatorname{Pic}(X) \\times \\operatorname{Pic}(X) \\to \\operatorname{Pic}(B)$ gives the\"schematic contribution\"to the Arakelov intersection number. We present an idelic and adelic interpretation of the Deligne pairing; this is the first crucial step for a full idelic and adelic interpretation of the Arakelov intersection number. For the idelic approach we show that the Deligne pairing can be lifted to a pairing $\\left<\\,,\\,\\right>_i:\\ker(d^1_\\times)\\times \\ker(d^1_\\times)\\to\\operatorname{Pic}(B) $, where $\\ker(d^1_\\times)$ is an important subspace of the two dimensional idelic group $\\mathbf A_X^\\times$. On the other hand, the argument for the adelic interpretation is entirely cohomological.","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2018-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adelic geometry on arithmetic surfaces, I: Idelic and adelic interpretation of the Deligne pairing\",\"authors\":\"Paolo Dolce\",\"doi\":\"10.1215/21562261-2022-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an arithmetic surface $X\\\\to B=\\\\operatorname{Spec} O_K$ the Deligne pairing $\\\\left<\\\\,,\\\\,\\\\right>\\\\colon \\\\operatorname{Pic}(X) \\\\times \\\\operatorname{Pic}(X) \\\\to \\\\operatorname{Pic}(B)$ gives the\\\"schematic contribution\\\"to the Arakelov intersection number. We present an idelic and adelic interpretation of the Deligne pairing; this is the first crucial step for a full idelic and adelic interpretation of the Arakelov intersection number. For the idelic approach we show that the Deligne pairing can be lifted to a pairing $\\\\left<\\\\,,\\\\,\\\\right>_i:\\\\ker(d^1_\\\\times)\\\\times \\\\ker(d^1_\\\\times)\\\\to\\\\operatorname{Pic}(B) $, where $\\\\ker(d^1_\\\\times)$ is an important subspace of the two dimensional idelic group $\\\\mathbf A_X^\\\\times$. On the other hand, the argument for the adelic interpretation is entirely cohomological.\",\"PeriodicalId\":49149,\"journal\":{\"name\":\"Kyoto Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyoto Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-2022-0009\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyoto Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2022-0009","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Adelic geometry on arithmetic surfaces, I: Idelic and adelic interpretation of the Deligne pairing
For an arithmetic surface $X\to B=\operatorname{Spec} O_K$ the Deligne pairing $\left<\,,\,\right>\colon \operatorname{Pic}(X) \times \operatorname{Pic}(X) \to \operatorname{Pic}(B)$ gives the"schematic contribution"to the Arakelov intersection number. We present an idelic and adelic interpretation of the Deligne pairing; this is the first crucial step for a full idelic and adelic interpretation of the Arakelov intersection number. For the idelic approach we show that the Deligne pairing can be lifted to a pairing $\left<\,,\,\right>_i:\ker(d^1_\times)\times \ker(d^1_\times)\to\operatorname{Pic}(B) $, where $\ker(d^1_\times)$ is an important subspace of the two dimensional idelic group $\mathbf A_X^\times$. On the other hand, the argument for the adelic interpretation is entirely cohomological.
期刊介绍:
The Kyoto Journal of Mathematics publishes original research papers at the forefront of pure mathematics, including surveys that contribute to advances in pure mathematics.