Veysel Parlak, Bunyamin Ozgeris, A. Uçar, A. ÇİLİNGİR YELTEKİN, F. B. Ozgeris, O. Caglar, G. Alak, H. Turkez, M. Atamanalp
{"title":"虹鳟暴露于3-苯甲酰吡啶后的血毒、氧化和基因毒性损伤","authors":"Veysel Parlak, Bunyamin Ozgeris, A. Uçar, A. ÇİLİNGİR YELTEKİN, F. B. Ozgeris, O. Caglar, G. Alak, H. Turkez, M. Atamanalp","doi":"10.1080/15376516.2022.2049413","DOIUrl":null,"url":null,"abstract":"Abstract Pyridine is a basic heterocyclic organic compound. The pyridine ring is present in many important compounds, including agricultural chemicals, medicines and vitamins. Due to their widespread industrial use, bioaccumulation and non-target toxic effects are being considered as a great risk to human and environmental health. In this study, we aimed to evaluate the hematological, oxidative and genotoxic damage potentials by different concentrations (1, 1.5, and 2 g/L) of the ketone 3-Benzoylpyridine (3BP) on rainbow trout (Oncorhynchus mykiss). Alterations in the biomarker levels of oxidative DNA damage (8-hydroxy-2′-deoxyguanosine (8-OHdG)), apoptosis (Caspase-3), malondialdehyde (MDA) as well as antioxidant enzyme activities including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), myeloperoxidase (MPO), paraoxonase (PON), and arylesterase (AR) were assessed in brain, liver, gill and blood tissues. Acetylcholinesterase (AChE) activity was also determined in brain tissue. In addition, we analyzed micronucleus (MN) rates and hematological indices of total erythrocyte count (RBC), total leukocyte count (WBC), hemoglobin (Hb), hematocrit (Hct), total platelet count (PLT), mean cell hemoglobin concentration (MCHC), mean cell hemoglobin (MCH), and mean cell volume (MCV) in blood. LC50-96h value of 3BP was calculated as 5.2 g/L from the data obtained. A significant decrease in brain AChE activity was determined in clear time and dose dependent manners. While SOD, CAT, GPx, PON, and AR levels were decreased, MDA, MPO, 8-OHdG and Caspase-3 levels were increased in all tissues (p < 0.05). Again, the 3BP led to increases of MN formation at all applied concentrations in the rates of between 45.4 and 72.7%. Significant differences (p < 0.05) were found out in between all studied hematology parameters between 3BP-exposed and the control fish. In conclusion, ours study firstly indicated that the treatment doses of 3BP induced distinct hematological and oxidative alterations as well as genotoxic damage in rainbow trout.","PeriodicalId":49117,"journal":{"name":"Toxicology Mechanisms and Methods","volume":"32 1","pages":"501 - 509"},"PeriodicalIF":2.8000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hematotoxic, oxidative and genotoxic damage in rainbow trout (Oncorhynchus mykiss) after exposure to 3-benzoylpyridine\",\"authors\":\"Veysel Parlak, Bunyamin Ozgeris, A. Uçar, A. ÇİLİNGİR YELTEKİN, F. B. Ozgeris, O. Caglar, G. Alak, H. Turkez, M. Atamanalp\",\"doi\":\"10.1080/15376516.2022.2049413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Pyridine is a basic heterocyclic organic compound. The pyridine ring is present in many important compounds, including agricultural chemicals, medicines and vitamins. Due to their widespread industrial use, bioaccumulation and non-target toxic effects are being considered as a great risk to human and environmental health. In this study, we aimed to evaluate the hematological, oxidative and genotoxic damage potentials by different concentrations (1, 1.5, and 2 g/L) of the ketone 3-Benzoylpyridine (3BP) on rainbow trout (Oncorhynchus mykiss). Alterations in the biomarker levels of oxidative DNA damage (8-hydroxy-2′-deoxyguanosine (8-OHdG)), apoptosis (Caspase-3), malondialdehyde (MDA) as well as antioxidant enzyme activities including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), myeloperoxidase (MPO), paraoxonase (PON), and arylesterase (AR) were assessed in brain, liver, gill and blood tissues. Acetylcholinesterase (AChE) activity was also determined in brain tissue. In addition, we analyzed micronucleus (MN) rates and hematological indices of total erythrocyte count (RBC), total leukocyte count (WBC), hemoglobin (Hb), hematocrit (Hct), total platelet count (PLT), mean cell hemoglobin concentration (MCHC), mean cell hemoglobin (MCH), and mean cell volume (MCV) in blood. LC50-96h value of 3BP was calculated as 5.2 g/L from the data obtained. A significant decrease in brain AChE activity was determined in clear time and dose dependent manners. While SOD, CAT, GPx, PON, and AR levels were decreased, MDA, MPO, 8-OHdG and Caspase-3 levels were increased in all tissues (p < 0.05). Again, the 3BP led to increases of MN formation at all applied concentrations in the rates of between 45.4 and 72.7%. Significant differences (p < 0.05) were found out in between all studied hematology parameters between 3BP-exposed and the control fish. In conclusion, ours study firstly indicated that the treatment doses of 3BP induced distinct hematological and oxidative alterations as well as genotoxic damage in rainbow trout.\",\"PeriodicalId\":49117,\"journal\":{\"name\":\"Toxicology Mechanisms and Methods\",\"volume\":\"32 1\",\"pages\":\"501 - 509\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Mechanisms and Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15376516.2022.2049413\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Mechanisms and Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15376516.2022.2049413","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Hematotoxic, oxidative and genotoxic damage in rainbow trout (Oncorhynchus mykiss) after exposure to 3-benzoylpyridine
Abstract Pyridine is a basic heterocyclic organic compound. The pyridine ring is present in many important compounds, including agricultural chemicals, medicines and vitamins. Due to their widespread industrial use, bioaccumulation and non-target toxic effects are being considered as a great risk to human and environmental health. In this study, we aimed to evaluate the hematological, oxidative and genotoxic damage potentials by different concentrations (1, 1.5, and 2 g/L) of the ketone 3-Benzoylpyridine (3BP) on rainbow trout (Oncorhynchus mykiss). Alterations in the biomarker levels of oxidative DNA damage (8-hydroxy-2′-deoxyguanosine (8-OHdG)), apoptosis (Caspase-3), malondialdehyde (MDA) as well as antioxidant enzyme activities including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), myeloperoxidase (MPO), paraoxonase (PON), and arylesterase (AR) were assessed in brain, liver, gill and blood tissues. Acetylcholinesterase (AChE) activity was also determined in brain tissue. In addition, we analyzed micronucleus (MN) rates and hematological indices of total erythrocyte count (RBC), total leukocyte count (WBC), hemoglobin (Hb), hematocrit (Hct), total platelet count (PLT), mean cell hemoglobin concentration (MCHC), mean cell hemoglobin (MCH), and mean cell volume (MCV) in blood. LC50-96h value of 3BP was calculated as 5.2 g/L from the data obtained. A significant decrease in brain AChE activity was determined in clear time and dose dependent manners. While SOD, CAT, GPx, PON, and AR levels were decreased, MDA, MPO, 8-OHdG and Caspase-3 levels were increased in all tissues (p < 0.05). Again, the 3BP led to increases of MN formation at all applied concentrations in the rates of between 45.4 and 72.7%. Significant differences (p < 0.05) were found out in between all studied hematology parameters between 3BP-exposed and the control fish. In conclusion, ours study firstly indicated that the treatment doses of 3BP induced distinct hematological and oxidative alterations as well as genotoxic damage in rainbow trout.
期刊介绍:
Toxicology Mechanisms and Methods is a peer-reviewed journal whose aim is twofold. Firstly, the journal contains original research on subjects dealing with the mechanisms by which foreign chemicals cause toxic tissue injury. Chemical substances of interest include industrial compounds, environmental pollutants, hazardous wastes, drugs, pesticides, and chemical warfare agents. The scope of the journal spans from molecular and cellular mechanisms of action to the consideration of mechanistic evidence in establishing regulatory policy.
Secondly, the journal addresses aspects of the development, validation, and application of new and existing laboratory methods, techniques, and equipment. A variety of research methods are discussed, including:
In vivo studies with standard and alternative species
In vitro studies and alternative methodologies
Molecular, biochemical, and cellular techniques
Pharmacokinetics and pharmacodynamics
Mathematical modeling and computer programs
Forensic analyses
Risk assessment
Data collection and analysis.