Tao Jing, Hongyan Huang, Yue Wu, Qinghe Gao, Yan Huo, Jiayu Sun
{"title":"物联网中基于期望-条件最大化信道估计的无阈值多属性物理层认证","authors":"Tao Jing, Hongyan Huang, Yue Wu, Qinghe Gao, Yan Huo, Jiayu Sun","doi":"10.1177/15501329221107822","DOIUrl":null,"url":null,"abstract":"With the number of Internet of Things devices continually increasing, the endogenous security of Internet of Things communication systems is growingly critical. Physical layer authentication is a powerful means of resisting active attacks by exploiting the unique characteristics inherent in wireless signals and physical devices. Many existing physical layer authentication schemes usually assume physical layer attributes obey certain statistical distributions that are unknown to receivers. To overcome the uncertainty, machine learning–based authentication approaches have been employed to implement threshold-free authentication. In this article, we utilize an expectation–conditional maximization algorithm to provide the physical layer attribute estimates required for the authentication phase and a logistic regression model to achieve threshold-free physical layer authentication. Moreover, a Frank–Wolfe algorithm is considered to achieve fast convergence of the logistic regression parameters and multi-attributes are adopted to increase the differentiation of transmitters. Simulation results demonstrate that the obtained attribute estimates are sufficient to provide a reliable source of data for authentication and the proposed threshold-free multi-attributes physical layer authentication scheme can effectively improve authentication accuracy, with the false alarm rate P f reduced to 0.0263% and the miss detection rate P m reduced to 0.3466%.","PeriodicalId":50327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Threshold-free multi-attributes physical layer authentication based on expectation–conditional maximization channel estimation in Internet of Things\",\"authors\":\"Tao Jing, Hongyan Huang, Yue Wu, Qinghe Gao, Yan Huo, Jiayu Sun\",\"doi\":\"10.1177/15501329221107822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the number of Internet of Things devices continually increasing, the endogenous security of Internet of Things communication systems is growingly critical. Physical layer authentication is a powerful means of resisting active attacks by exploiting the unique characteristics inherent in wireless signals and physical devices. Many existing physical layer authentication schemes usually assume physical layer attributes obey certain statistical distributions that are unknown to receivers. To overcome the uncertainty, machine learning–based authentication approaches have been employed to implement threshold-free authentication. In this article, we utilize an expectation–conditional maximization algorithm to provide the physical layer attribute estimates required for the authentication phase and a logistic regression model to achieve threshold-free physical layer authentication. Moreover, a Frank–Wolfe algorithm is considered to achieve fast convergence of the logistic regression parameters and multi-attributes are adopted to increase the differentiation of transmitters. Simulation results demonstrate that the obtained attribute estimates are sufficient to provide a reliable source of data for authentication and the proposed threshold-free multi-attributes physical layer authentication scheme can effectively improve authentication accuracy, with the false alarm rate P f reduced to 0.0263% and the miss detection rate P m reduced to 0.3466%.\",\"PeriodicalId\":50327,\"journal\":{\"name\":\"International Journal of Distributed Sensor Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Distributed Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/15501329221107822\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/15501329221107822","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Threshold-free multi-attributes physical layer authentication based on expectation–conditional maximization channel estimation in Internet of Things
With the number of Internet of Things devices continually increasing, the endogenous security of Internet of Things communication systems is growingly critical. Physical layer authentication is a powerful means of resisting active attacks by exploiting the unique characteristics inherent in wireless signals and physical devices. Many existing physical layer authentication schemes usually assume physical layer attributes obey certain statistical distributions that are unknown to receivers. To overcome the uncertainty, machine learning–based authentication approaches have been employed to implement threshold-free authentication. In this article, we utilize an expectation–conditional maximization algorithm to provide the physical layer attribute estimates required for the authentication phase and a logistic regression model to achieve threshold-free physical layer authentication. Moreover, a Frank–Wolfe algorithm is considered to achieve fast convergence of the logistic regression parameters and multi-attributes are adopted to increase the differentiation of transmitters. Simulation results demonstrate that the obtained attribute estimates are sufficient to provide a reliable source of data for authentication and the proposed threshold-free multi-attributes physical layer authentication scheme can effectively improve authentication accuracy, with the false alarm rate P f reduced to 0.0263% and the miss detection rate P m reduced to 0.3466%.
期刊介绍:
International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.