果糖基缬氨酸和糖化血红蛋白A1c一次性生物传感器的研制

Sean Liu, Jessica Leng, Theonalyn C. Aquino
{"title":"果糖基缬氨酸和糖化血红蛋白A1c一次性生物传感器的研制","authors":"Sean Liu, Jessica Leng, Theonalyn C. Aquino","doi":"10.4236/jst.2019.94005","DOIUrl":null,"url":null,"abstract":"A novel amperometric biosensor prototype was fabricated using screen printing technique. The disposable single-use strips were made from conductive carbon ink and modified with fructosyl amino acid oxidase. The electrodes and conducting paths were made solely with carbon ink and characterized by conductivity and cyclic voltammetry. The biosensor showed high current output, large linearity, and effectiveness for fructosyl valine as well as human blood samples. Amperometric studies were carried out using both fructosyl valine and human blood samples. With 5 uL sample volume, the biosensor showed strong amperometric response with good linearity for a wide range (0 to 8 mM). Diabetic and healthy blood samples showed sufficient difference in their amperometric responses that correlate well with their different hemoglobin A1c levels. These results demonstrate the feasibility of using this type of inexpensive single-use biosensor strips as the basis for determining hemoglobin A1c levels for diabetic patients.","PeriodicalId":68742,"journal":{"name":"传感技术(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Development of Disposable Single-Use Biosensor for Fructosyl Valine and Glycated Hemoglobin A1c\",\"authors\":\"Sean Liu, Jessica Leng, Theonalyn C. Aquino\",\"doi\":\"10.4236/jst.2019.94005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel amperometric biosensor prototype was fabricated using screen printing technique. The disposable single-use strips were made from conductive carbon ink and modified with fructosyl amino acid oxidase. The electrodes and conducting paths were made solely with carbon ink and characterized by conductivity and cyclic voltammetry. The biosensor showed high current output, large linearity, and effectiveness for fructosyl valine as well as human blood samples. Amperometric studies were carried out using both fructosyl valine and human blood samples. With 5 uL sample volume, the biosensor showed strong amperometric response with good linearity for a wide range (0 to 8 mM). Diabetic and healthy blood samples showed sufficient difference in their amperometric responses that correlate well with their different hemoglobin A1c levels. These results demonstrate the feasibility of using this type of inexpensive single-use biosensor strips as the basis for determining hemoglobin A1c levels for diabetic patients.\",\"PeriodicalId\":68742,\"journal\":{\"name\":\"传感技术(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"传感技术(英文)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/jst.2019.94005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"传感技术(英文)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jst.2019.94005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

采用丝网印刷技术制作了一种新型安培型生物传感器样机。以导电碳墨为原料,用果糖基氨基酸氧化酶对其进行改性,制备了一次性一次性试纸条。电极和导电路径完全由碳墨水制成,并通过电导率和循环伏安法进行了表征。该生物传感器显示出高电流输出,大线性,对果糖基缬氨酸和人体血液样本有效。使用果糖基缬氨酸和人类血液样本进行了安培研究。当样品体积为5 uL时,该生物传感器在宽范围(0 ~ 8 mM)内具有良好的线性,具有较强的安培响应。糖尿病患者和健康人的血液样本在安培反应上显示出足够的差异,这与他们不同的血红蛋白A1c水平密切相关。这些结果证明了使用这种廉价的一次性生物传感器试纸条作为糖尿病患者血红蛋白A1c水平测定基础的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of Disposable Single-Use Biosensor for Fructosyl Valine and Glycated Hemoglobin A1c
A novel amperometric biosensor prototype was fabricated using screen printing technique. The disposable single-use strips were made from conductive carbon ink and modified with fructosyl amino acid oxidase. The electrodes and conducting paths were made solely with carbon ink and characterized by conductivity and cyclic voltammetry. The biosensor showed high current output, large linearity, and effectiveness for fructosyl valine as well as human blood samples. Amperometric studies were carried out using both fructosyl valine and human blood samples. With 5 uL sample volume, the biosensor showed strong amperometric response with good linearity for a wide range (0 to 8 mM). Diabetic and healthy blood samples showed sufficient difference in their amperometric responses that correlate well with their different hemoglobin A1c levels. These results demonstrate the feasibility of using this type of inexpensive single-use biosensor strips as the basis for determining hemoglobin A1c levels for diabetic patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
75
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信