调查法国COVID-19数据的强有力现象学方法

IF 0.4 Q4 MATHEMATICS, APPLIED
Q. Griette, J. Demongeot, P. Magal
{"title":"调查法国COVID-19数据的强有力现象学方法","authors":"Q. Griette, J. Demongeot, P. Magal","doi":"10.1101/2021.02.10.21251500","DOIUrl":null,"url":null,"abstract":"We provide a new method to analyze the COVID-19 cumulative reported cases data based on a two-step process: first we regularize the data by using a phenomenological model which takes into account the endemic or epidemic nature of the time period, then we use a mathematical model which reproduces the epidemic exactly. This allows us to derive new information on the epidemic parameters and to compute the effective basic reproductive ratio on a daily basis. Our method has the advantage of identifying robust trends in the number of new infectious cases and produces an extremely smooth reconstruction of the epidemic. The number of parameters required by the method is parsimonious: for the French epidemic between February 2020 and January 2021 we use only 11 parameters in total.","PeriodicalId":93797,"journal":{"name":"Mathematics in applied sciences and engineering","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"A robust phenomenological approach to investigate COVID-19 data for France\",\"authors\":\"Q. Griette, J. Demongeot, P. Magal\",\"doi\":\"10.1101/2021.02.10.21251500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a new method to analyze the COVID-19 cumulative reported cases data based on a two-step process: first we regularize the data by using a phenomenological model which takes into account the endemic or epidemic nature of the time period, then we use a mathematical model which reproduces the epidemic exactly. This allows us to derive new information on the epidemic parameters and to compute the effective basic reproductive ratio on a daily basis. Our method has the advantage of identifying robust trends in the number of new infectious cases and produces an extremely smooth reconstruction of the epidemic. The number of parameters required by the method is parsimonious: for the French epidemic between February 2020 and January 2021 we use only 11 parameters in total.\",\"PeriodicalId\":93797,\"journal\":{\"name\":\"Mathematics in applied sciences and engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in applied sciences and engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2021.02.10.21251500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in applied sciences and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2021.02.10.21251500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 20

摘要

本文提出了一种新的分析COVID-19累计报告病例数据的方法,该方法基于两步过程:首先使用考虑时间段地方性或流行病性质的现象学模型对数据进行正则化,然后使用精确再现流行病的数学模型。这使我们能够获得关于流行病参数的新信息,并每天计算有效基本生殖比率。我们的方法的优点是确定了新感染病例数量的稳健趋势,并产生了非常顺利的流行病重建。该方法所需的参数数量非常少:对于2020年2月至2021年1月期间的法国疫情,我们总共只使用了11个参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A robust phenomenological approach to investigate COVID-19 data for France
We provide a new method to analyze the COVID-19 cumulative reported cases data based on a two-step process: first we regularize the data by using a phenomenological model which takes into account the endemic or epidemic nature of the time period, then we use a mathematical model which reproduces the epidemic exactly. This allows us to derive new information on the epidemic parameters and to compute the effective basic reproductive ratio on a daily basis. Our method has the advantage of identifying robust trends in the number of new infectious cases and produces an extremely smooth reconstruction of the epidemic. The number of parameters required by the method is parsimonious: for the French epidemic between February 2020 and January 2021 we use only 11 parameters in total.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信