混合型泛函微分方程半全局解和全局解的上下估计

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
J. Diblík, G. Vážanová
{"title":"混合型泛函微分方程半全局解和全局解的上下估计","authors":"J. Diblík, G. Vážanová","doi":"10.1515/anona-2021-0218","DOIUrl":null,"url":null,"abstract":"Abstract In the paper, nonlinear systems of mixed-type functional differential equations are analyzed and the existence of semi-global and global solutions is proved. In proofs, the monotone iterative technique and Schauder-Tychonov fixed-point theorem are used. In addition to proving the existence of global solutions, estimates of their co-ordinates are derived as well. Linear variants of results are considered and the results are illustrated by selected examples.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lower and upper estimates of semi-global and global solutions to mixed-type functional differential equations\",\"authors\":\"J. Diblík, G. Vážanová\",\"doi\":\"10.1515/anona-2021-0218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the paper, nonlinear systems of mixed-type functional differential equations are analyzed and the existence of semi-global and global solutions is proved. In proofs, the monotone iterative technique and Schauder-Tychonov fixed-point theorem are used. In addition to proving the existence of global solutions, estimates of their co-ordinates are derived as well. Linear variants of results are considered and the results are illustrated by selected examples.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2021-0218\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2021-0218","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

摘要

摘要本文分析了一类非线性混合型泛函微分方程系统,证明了半全局解和全局解的存在性。在证明中,使用单调迭代技术和Schauder-Tychonov不动点定理。除了证明全局解的存在性外,还推导了它们的坐标估计。考虑了结果的线性变化,并通过选定的例子说明了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lower and upper estimates of semi-global and global solutions to mixed-type functional differential equations
Abstract In the paper, nonlinear systems of mixed-type functional differential equations are analyzed and the existence of semi-global and global solutions is proved. In proofs, the monotone iterative technique and Schauder-Tychonov fixed-point theorem are used. In addition to proving the existence of global solutions, estimates of their co-ordinates are derived as well. Linear variants of results are considered and the results are illustrated by selected examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信