Yanbo Zhang , Zheng Yang , Jingjing Cui , Xianfu Lei , Yi Wu , Jun Zhang , Chao Fang , Zhiguo Ding
{"title":"在MISO-NOMA网络中最大化保密和速率的安全波束成形设计","authors":"Yanbo Zhang , Zheng Yang , Jingjing Cui , Xianfu Lei , Yi Wu , Jun Zhang , Chao Fang , Zhiguo Ding","doi":"10.1016/j.dcan.2023.04.001","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the application of Non-Orthogonal Multiple Access (NOMA) is investigated in a multiple-input single-output network consisting of multiple legitimate users and a potential eavesdropper. To support secure transmissions from legitimate users, two NOMA Secrecy Sum Rate Transmit BeamForming (NOMA-SSR-TBF) schemes are proposed to maximise the SSR of a Base Station (BS) with sufficient and insufficient transmit power. For BS with sufficient transmit power, an artificial jamming beamforming design scheme is proposed to disrupt the potential eavesdropping without impacting the legitimate transmissions. In addition, for BS with insufficient transmit power, a modified successive interference cancellation decoding sequence is used to reduce the impact of artificial jamming on legitimate transmissions. More specifically, iterative algorithm for the successive convex approximation are provided to jointly optimise the vectors of transmit beamforming and artificial jamming. Experimental results demonstrate that the proposed NOMA-SSR-TBF schemes outperforms the existing works, such as the maximized artificial jamming power scheme, the maximized artificial jamming power scheme with artificial jamming beamforming design and maximized secrecy sum rate scheme without artificial jamming beamforming design.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 1","pages":"Pages 83-91"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secure beamforming designs for maximizing secrecy sum rate in MISO-NOMA networks\",\"authors\":\"Yanbo Zhang , Zheng Yang , Jingjing Cui , Xianfu Lei , Yi Wu , Jun Zhang , Chao Fang , Zhiguo Ding\",\"doi\":\"10.1016/j.dcan.2023.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, the application of Non-Orthogonal Multiple Access (NOMA) is investigated in a multiple-input single-output network consisting of multiple legitimate users and a potential eavesdropper. To support secure transmissions from legitimate users, two NOMA Secrecy Sum Rate Transmit BeamForming (NOMA-SSR-TBF) schemes are proposed to maximise the SSR of a Base Station (BS) with sufficient and insufficient transmit power. For BS with sufficient transmit power, an artificial jamming beamforming design scheme is proposed to disrupt the potential eavesdropping without impacting the legitimate transmissions. In addition, for BS with insufficient transmit power, a modified successive interference cancellation decoding sequence is used to reduce the impact of artificial jamming on legitimate transmissions. More specifically, iterative algorithm for the successive convex approximation are provided to jointly optimise the vectors of transmit beamforming and artificial jamming. Experimental results demonstrate that the proposed NOMA-SSR-TBF schemes outperforms the existing works, such as the maximized artificial jamming power scheme, the maximized artificial jamming power scheme with artificial jamming beamforming design and maximized secrecy sum rate scheme without artificial jamming beamforming design.</div></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":\"11 1\",\"pages\":\"Pages 83-91\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864823000780\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864823000780","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Secure beamforming designs for maximizing secrecy sum rate in MISO-NOMA networks
In this paper, the application of Non-Orthogonal Multiple Access (NOMA) is investigated in a multiple-input single-output network consisting of multiple legitimate users and a potential eavesdropper. To support secure transmissions from legitimate users, two NOMA Secrecy Sum Rate Transmit BeamForming (NOMA-SSR-TBF) schemes are proposed to maximise the SSR of a Base Station (BS) with sufficient and insufficient transmit power. For BS with sufficient transmit power, an artificial jamming beamforming design scheme is proposed to disrupt the potential eavesdropping without impacting the legitimate transmissions. In addition, for BS with insufficient transmit power, a modified successive interference cancellation decoding sequence is used to reduce the impact of artificial jamming on legitimate transmissions. More specifically, iterative algorithm for the successive convex approximation are provided to jointly optimise the vectors of transmit beamforming and artificial jamming. Experimental results demonstrate that the proposed NOMA-SSR-TBF schemes outperforms the existing works, such as the maximized artificial jamming power scheme, the maximized artificial jamming power scheme with artificial jamming beamforming design and maximized secrecy sum rate scheme without artificial jamming beamforming design.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.