{"title":"塞尔伯格不规则密度筛","authors":"J. Friedlander, H. Iwaniec","doi":"10.4064/aa220719-5-10","DOIUrl":null,"url":null,"abstract":": We study certain aspects of the Selberg sieve, in particular when sifting by rather thin sets of primes. We derive new results for the lower bound sieve suited especially for this setup and we apply them in particular to give a new sieve-propelled proof of Linnik’s theorem on the least prime in an arithmetic progression in the case of the presence of exceptional zeros.","PeriodicalId":37888,"journal":{"name":"Acta Arithmetica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Selberg’s sieve of irregular density\",\"authors\":\"J. Friedlander, H. Iwaniec\",\"doi\":\"10.4064/aa220719-5-10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": We study certain aspects of the Selberg sieve, in particular when sifting by rather thin sets of primes. We derive new results for the lower bound sieve suited especially for this setup and we apply them in particular to give a new sieve-propelled proof of Linnik’s theorem on the least prime in an arithmetic progression in the case of the presence of exceptional zeros.\",\"PeriodicalId\":37888,\"journal\":{\"name\":\"Acta Arithmetica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Arithmetica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/aa220719-5-10\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Arithmetica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/aa220719-5-10","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
: We study certain aspects of the Selberg sieve, in particular when sifting by rather thin sets of primes. We derive new results for the lower bound sieve suited especially for this setup and we apply them in particular to give a new sieve-propelled proof of Linnik’s theorem on the least prime in an arithmetic progression in the case of the presence of exceptional zeros.