{"title":"具有项目特定学习参数的IRT学习模型","authors":"Albert Yu, J. Douglas","doi":"10.3102/10769986231193096","DOIUrl":null,"url":null,"abstract":"We propose a new item response theory growth model with item-specific learning parameters, or ISLP, and two variations of this model. In the ISLP model, either items or blocks of items have their own learning parameters. This model may be used to improve the efficiency of learning in a formative assessment. We show ways that the ISLP model’s learning parameters can be estimated in simulation using Markov chain Monte Carlo (MCMC), demonstrate a way that the model could be used in the context of adaptive item selection to increase the rate of learning, and estimate the learning parameters in an empirical data analysis using the ISLP. In the simulation studies, the one-parameter logistic model was used as the measurement model to generate random response data with various test lengths and sample sizes. Ability growth was modeled with a few variations of the ISLP model, and it was verified that the parameters were accurately recovered. Secondly, we generated data using the linear logistic test model with known Q-matrix structure for the item difficulties. Using a two-step procedure gave very comparable results for the estimation of the learning parameters even when item difficulties were unknown. The potential benefit of using an adaptive selection method in conjunction with the ISLP model was shown by comparing total improvement in the examinees’ ability parameter to two other methods of item selection that do not utilize this growth model. If the ISLP holds, adaptive item selection consistently led to larger improvements over the other methods. A real data application of the ISLP was given to illustrate its use in a spatial reasoning study designed to promote learning. In this study, interventions were given after each block of ten items to increase ability. Learning parameters were estimated using MCMC.","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"IRT Models for Learning With Item-Specific Learning Parameters\",\"authors\":\"Albert Yu, J. Douglas\",\"doi\":\"10.3102/10769986231193096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new item response theory growth model with item-specific learning parameters, or ISLP, and two variations of this model. In the ISLP model, either items or blocks of items have their own learning parameters. This model may be used to improve the efficiency of learning in a formative assessment. We show ways that the ISLP model’s learning parameters can be estimated in simulation using Markov chain Monte Carlo (MCMC), demonstrate a way that the model could be used in the context of adaptive item selection to increase the rate of learning, and estimate the learning parameters in an empirical data analysis using the ISLP. In the simulation studies, the one-parameter logistic model was used as the measurement model to generate random response data with various test lengths and sample sizes. Ability growth was modeled with a few variations of the ISLP model, and it was verified that the parameters were accurately recovered. Secondly, we generated data using the linear logistic test model with known Q-matrix structure for the item difficulties. Using a two-step procedure gave very comparable results for the estimation of the learning parameters even when item difficulties were unknown. The potential benefit of using an adaptive selection method in conjunction with the ISLP model was shown by comparing total improvement in the examinees’ ability parameter to two other methods of item selection that do not utilize this growth model. If the ISLP holds, adaptive item selection consistently led to larger improvements over the other methods. A real data application of the ISLP was given to illustrate its use in a spatial reasoning study designed to promote learning. In this study, interventions were given after each block of ten items to increase ability. Learning parameters were estimated using MCMC.\",\"PeriodicalId\":48001,\"journal\":{\"name\":\"Journal of Educational and Behavioral Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Educational and Behavioral Statistics\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3102/10769986231193096\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3102/10769986231193096","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
IRT Models for Learning With Item-Specific Learning Parameters
We propose a new item response theory growth model with item-specific learning parameters, or ISLP, and two variations of this model. In the ISLP model, either items or blocks of items have their own learning parameters. This model may be used to improve the efficiency of learning in a formative assessment. We show ways that the ISLP model’s learning parameters can be estimated in simulation using Markov chain Monte Carlo (MCMC), demonstrate a way that the model could be used in the context of adaptive item selection to increase the rate of learning, and estimate the learning parameters in an empirical data analysis using the ISLP. In the simulation studies, the one-parameter logistic model was used as the measurement model to generate random response data with various test lengths and sample sizes. Ability growth was modeled with a few variations of the ISLP model, and it was verified that the parameters were accurately recovered. Secondly, we generated data using the linear logistic test model with known Q-matrix structure for the item difficulties. Using a two-step procedure gave very comparable results for the estimation of the learning parameters even when item difficulties were unknown. The potential benefit of using an adaptive selection method in conjunction with the ISLP model was shown by comparing total improvement in the examinees’ ability parameter to two other methods of item selection that do not utilize this growth model. If the ISLP holds, adaptive item selection consistently led to larger improvements over the other methods. A real data application of the ISLP was given to illustrate its use in a spatial reasoning study designed to promote learning. In this study, interventions were given after each block of ten items to increase ability. Learning parameters were estimated using MCMC.
期刊介绍:
Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.