非热射频刺激抑制莱茵衣藻色氨酸合成酶β亚基

B. M. Butters, G. Vogeli, Xavier A. Figueroa
{"title":"非热射频刺激抑制莱茵衣藻色氨酸合成酶β亚基","authors":"B. M. Butters, G. Vogeli, Xavier A. Figueroa","doi":"10.4236/OJBIPHY.2017.73007","DOIUrl":null,"url":null,"abstract":"To demonstrate the ability of the Nativis signal transduction technology (Butters et al. 2014) to modulate the expression of algae mRNA and protein, we tested if we can alter specific enzyme levels in Chlamydomonas reinhardtii. We inhibited the synthesis of the enzyme tryptophan synthase beta subunit (MAA7) by applying the signal derived from a published siRNA (Zhao et al. 2009). With lower levels of MAA7, Chlamydomonas reinhardtii can grow in the presence of the prodrug 5-Fluoroindole (5-FI), because less 5-Fluoroin-dole can be converted to the toxic 5-Fluoro-L-tryptophan (5-FT). We find a 24% (±5%) increase of growth with the signal versus no signal. To see if that effect was due to the reduction of the amount of mRNA encoding MAA7, we used Real-Time Quantitative PCR (RT-QPCR) to measure the levels of MAA7 mRNA. To normalize the MAA7 mRNA level, we compared them to the levels of a mRNA that is not affected by the signal (G protein beta subunit-like polypeptide, Cblp). Two conditions increase the effectiveness of the signal. One can either treat the cell cultures during the logarithmic growth phase (starting the cultures at density of 0.104 OD at 750 nm). Or one can treat the cultures at a later stage of the logarithmic growth, but treating them for a longer time (8.7% versus 3.5% of the culture time). Under these conditions we found around a 50% decrease in the mRNA levels for MAA7. Treating the cultures at the earlier growth phase or at a later growth phase is less effective, with only a 20% effect.","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Thermal Radio Frequency Stimulation Inhibits the Tryptophan Synthase Beta Subunit in the Algae Chlamydomonas reinhardtii\",\"authors\":\"B. M. Butters, G. Vogeli, Xavier A. Figueroa\",\"doi\":\"10.4236/OJBIPHY.2017.73007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To demonstrate the ability of the Nativis signal transduction technology (Butters et al. 2014) to modulate the expression of algae mRNA and protein, we tested if we can alter specific enzyme levels in Chlamydomonas reinhardtii. We inhibited the synthesis of the enzyme tryptophan synthase beta subunit (MAA7) by applying the signal derived from a published siRNA (Zhao et al. 2009). With lower levels of MAA7, Chlamydomonas reinhardtii can grow in the presence of the prodrug 5-Fluoroindole (5-FI), because less 5-Fluoroin-dole can be converted to the toxic 5-Fluoro-L-tryptophan (5-FT). We find a 24% (±5%) increase of growth with the signal versus no signal. To see if that effect was due to the reduction of the amount of mRNA encoding MAA7, we used Real-Time Quantitative PCR (RT-QPCR) to measure the levels of MAA7 mRNA. To normalize the MAA7 mRNA level, we compared them to the levels of a mRNA that is not affected by the signal (G protein beta subunit-like polypeptide, Cblp). Two conditions increase the effectiveness of the signal. One can either treat the cell cultures during the logarithmic growth phase (starting the cultures at density of 0.104 OD at 750 nm). Or one can treat the cultures at a later stage of the logarithmic growth, but treating them for a longer time (8.7% versus 3.5% of the culture time). Under these conditions we found around a 50% decrease in the mRNA levels for MAA7. Treating the cultures at the earlier growth phase or at a later growth phase is less effective, with only a 20% effect.\",\"PeriodicalId\":59528,\"journal\":{\"name\":\"生物物理学期刊(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物物理学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/OJBIPHY.2017.73007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物物理学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/OJBIPHY.2017.73007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了证明Nativis信号转导技术(Butters等人,2014)调节藻类mRNA和蛋白质表达的能力,我们测试了是否可以改变莱茵衣藻中的特定酶水平。我们通过应用来源于已发表的siRNA的信号来抑制色氨酸合酶β亚基(MAA7)的合成(赵等人,2009)。在MAA7水平较低的情况下,莱茵衣藻可以在前药5-氟吲哚(5-FI)存在下生长,因为较少的5-氟吲哚可以转化为有毒的5-氟-L-色氨酸(5-FT)。我们发现,与没有信号相比,有信号的生长增加了24%(±5%)。为了观察这种影响是否是由于编码MAA7的mRNA量的减少,我们使用实时定量PCR(RT-QPCR)来测量MAA7 mRNA的水平。为了使MAA7 mRNA水平正常化,我们将其与不受信号影响的mRNA(G蛋白β亚基样多肽,Cblp)的水平进行了比较。有两种情况可以提高信号的有效性。可以在对数生长阶段处理细胞培养物(在750nm下以0.104OD的密度开始培养物)。或者,可以在对数生长的后期处理培养物,但处理时间更长(培养时间的8.7%对3.5%)。在这些条件下,我们发现MAA7的mRNA水平下降了约50%。在早期生长阶段或后期生长阶段处理培养物的效果较差,只有20%的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Thermal Radio Frequency Stimulation Inhibits the Tryptophan Synthase Beta Subunit in the Algae Chlamydomonas reinhardtii
To demonstrate the ability of the Nativis signal transduction technology (Butters et al. 2014) to modulate the expression of algae mRNA and protein, we tested if we can alter specific enzyme levels in Chlamydomonas reinhardtii. We inhibited the synthesis of the enzyme tryptophan synthase beta subunit (MAA7) by applying the signal derived from a published siRNA (Zhao et al. 2009). With lower levels of MAA7, Chlamydomonas reinhardtii can grow in the presence of the prodrug 5-Fluoroindole (5-FI), because less 5-Fluoroin-dole can be converted to the toxic 5-Fluoro-L-tryptophan (5-FT). We find a 24% (±5%) increase of growth with the signal versus no signal. To see if that effect was due to the reduction of the amount of mRNA encoding MAA7, we used Real-Time Quantitative PCR (RT-QPCR) to measure the levels of MAA7 mRNA. To normalize the MAA7 mRNA level, we compared them to the levels of a mRNA that is not affected by the signal (G protein beta subunit-like polypeptide, Cblp). Two conditions increase the effectiveness of the signal. One can either treat the cell cultures during the logarithmic growth phase (starting the cultures at density of 0.104 OD at 750 nm). Or one can treat the cultures at a later stage of the logarithmic growth, but treating them for a longer time (8.7% versus 3.5% of the culture time). Under these conditions we found around a 50% decrease in the mRNA levels for MAA7. Treating the cultures at the earlier growth phase or at a later growth phase is less effective, with only a 20% effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
128
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信