在新药临床试验中同时评估两种候选伴随诊断分析的双变量贝叶斯框架

Q3 Medicine
R. Simon, Songbai Wang
{"title":"在新药临床试验中同时评估两种候选伴随诊断分析的双变量贝叶斯框架","authors":"R. Simon, Songbai Wang","doi":"10.1080/24709360.2021.1913705","DOIUrl":null,"url":null,"abstract":"Companion diagnostic tests play an important role in precision medicine. With the advancement of new technologies, multiple companion diagnostic tests can be rapidly developed in multiple platforms and use different samples to select patients for new treatments. Analytically validated assays must be clinically evaluated before they can be implemented in patient management. The status quo design for validating candidate assays is to employ one candidate assay to select patients for new drug clinical trial and then further evaluate the 2nd candidate assay in a bridging study. We propose a new enrollment strategy that employs two assays to select patients. We then develop a bivariate Bayesian approach that enables the totality of data to be used in evaluating whether these assays can be used independently or in a composite procedure in selecting right patients for new treatment. We demonstrate through simulations that when proper priors are available, the Bayesian approach is superior to classical methods in terms of statistical power.","PeriodicalId":37240,"journal":{"name":"Biostatistics and Epidemiology","volume":"5 1","pages":"207 - 217"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24709360.2021.1913705","citationCount":"1","resultStr":"{\"title\":\"A bivariate Bayesian framework for simultaneous evaluation of two candidate companion diagnostic assays in a new drug clinical trial\",\"authors\":\"R. Simon, Songbai Wang\",\"doi\":\"10.1080/24709360.2021.1913705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Companion diagnostic tests play an important role in precision medicine. With the advancement of new technologies, multiple companion diagnostic tests can be rapidly developed in multiple platforms and use different samples to select patients for new treatments. Analytically validated assays must be clinically evaluated before they can be implemented in patient management. The status quo design for validating candidate assays is to employ one candidate assay to select patients for new drug clinical trial and then further evaluate the 2nd candidate assay in a bridging study. We propose a new enrollment strategy that employs two assays to select patients. We then develop a bivariate Bayesian approach that enables the totality of data to be used in evaluating whether these assays can be used independently or in a composite procedure in selecting right patients for new treatment. We demonstrate through simulations that when proper priors are available, the Bayesian approach is superior to classical methods in terms of statistical power.\",\"PeriodicalId\":37240,\"journal\":{\"name\":\"Biostatistics and Epidemiology\",\"volume\":\"5 1\",\"pages\":\"207 - 217\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/24709360.2021.1913705\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biostatistics and Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24709360.2021.1913705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24709360.2021.1913705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

摘要

辅助诊断测试在精准医学中发挥着重要作用。随着新技术的进步,可以在多个平台上快速开发多种伴随诊断测试,并使用不同的样本选择患者进行新的治疗。分析验证的化验必须进行临床评估,然后才能在患者管理中实施。验证候选检测的现状设计是使用一种候选检测来选择患者进行新药临床试验,然后在桥接研究中进一步评估第二种候选检测。我们提出了一种新的入组策略,采用两种测定法来选择患者。然后,我们开发了一种双变量贝叶斯方法,使整个数据能够用于评估这些测定是否可以独立使用或在选择合适患者进行新治疗的复合程序中使用。我们通过仿真证明,当有合适的先验时,贝叶斯方法在统计能力方面优于经典方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A bivariate Bayesian framework for simultaneous evaluation of two candidate companion diagnostic assays in a new drug clinical trial
Companion diagnostic tests play an important role in precision medicine. With the advancement of new technologies, multiple companion diagnostic tests can be rapidly developed in multiple platforms and use different samples to select patients for new treatments. Analytically validated assays must be clinically evaluated before they can be implemented in patient management. The status quo design for validating candidate assays is to employ one candidate assay to select patients for new drug clinical trial and then further evaluate the 2nd candidate assay in a bridging study. We propose a new enrollment strategy that employs two assays to select patients. We then develop a bivariate Bayesian approach that enables the totality of data to be used in evaluating whether these assays can be used independently or in a composite procedure in selecting right patients for new treatment. We demonstrate through simulations that when proper priors are available, the Bayesian approach is superior to classical methods in terms of statistical power.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biostatistics and Epidemiology
Biostatistics and Epidemiology Medicine-Health Informatics
CiteScore
1.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信