张量和旋量值随机场及其在连续介质物理学和宇宙学中的应用

IF 1.3 Q2 STATISTICS & PROBABILITY
A. Malyarenko, M. Ostoja-Starzewski
{"title":"张量和旋量值随机场及其在连续介质物理学和宇宙学中的应用","authors":"A. Malyarenko, M. Ostoja-Starzewski","doi":"10.1214/22-ps12","DOIUrl":null,"url":null,"abstract":"In this paper, we review the history, current state-of-art, and physical applications of the spectral theory of two classes of random functions. One class consists of homogeneous and isotropic random fields defined on a Euclidean space and taking values in a real finite-dimensional linear space. In applications to continuum physics, such a field describes physical properties of a homogeneous and isotropic continuous medium in the situation, when a microstructure is attached to all medium points. The range of the field is the fixed point set of a symmetry class, where two compact Lie groups act by orthogonal representations. The material symmetry group of a homogeneous medium is the same at each point and acts trivially, while the group of physical symmetries may act nontrivially. In an isotropic random medium, the rank 1 (resp. rank 2) correlation tensors of the field transform under the action of the group of physical symmetries according to the above representation (resp. its tensor square), making the field isotropic. Another class consists of isotropic random cross-sections of homogeneous vector bundles over a coset space of a compact Lie group. In applications to cosmology, the coset space models the sky sphere, while the random cross-section models a cosmic background. The Cosmological Principle ensures that the cross-section is isotropic. For convenience of the reader, a necessary material from multilinear algebra, representation theory, and differential geometry is reviewed in Appendix. ∗Corresponding author. Division of Mathematics and Physics, Mälardalen University, Box 883, 721 23 Västerås, Sweden. E-mail: anatoliy.malyarenko@mdh.se. †Department of Mechanical Science & Engineering, also Institute for Condensed Matter Theory and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801-2906 USA. E-mail: martinos@illinois.edu. 1 ar X iv :2 11 2. 04 82 6v 1 [ m at h. PR ] 9 D ec 2 02 1","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Tensor- and spinor-valued random fields with applications to continuum physics and cosmology\",\"authors\":\"A. Malyarenko, M. Ostoja-Starzewski\",\"doi\":\"10.1214/22-ps12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we review the history, current state-of-art, and physical applications of the spectral theory of two classes of random functions. One class consists of homogeneous and isotropic random fields defined on a Euclidean space and taking values in a real finite-dimensional linear space. In applications to continuum physics, such a field describes physical properties of a homogeneous and isotropic continuous medium in the situation, when a microstructure is attached to all medium points. The range of the field is the fixed point set of a symmetry class, where two compact Lie groups act by orthogonal representations. The material symmetry group of a homogeneous medium is the same at each point and acts trivially, while the group of physical symmetries may act nontrivially. In an isotropic random medium, the rank 1 (resp. rank 2) correlation tensors of the field transform under the action of the group of physical symmetries according to the above representation (resp. its tensor square), making the field isotropic. Another class consists of isotropic random cross-sections of homogeneous vector bundles over a coset space of a compact Lie group. In applications to cosmology, the coset space models the sky sphere, while the random cross-section models a cosmic background. The Cosmological Principle ensures that the cross-section is isotropic. For convenience of the reader, a necessary material from multilinear algebra, representation theory, and differential geometry is reviewed in Appendix. ∗Corresponding author. Division of Mathematics and Physics, Mälardalen University, Box 883, 721 23 Västerås, Sweden. E-mail: anatoliy.malyarenko@mdh.se. †Department of Mechanical Science & Engineering, also Institute for Condensed Matter Theory and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801-2906 USA. E-mail: martinos@illinois.edu. 1 ar X iv :2 11 2. 04 82 6v 1 [ m at h. PR ] 9 D ec 2 02 1\",\"PeriodicalId\":46216,\"journal\":{\"name\":\"Probability Surveys\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-ps12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-ps12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

摘要

本文综述了两类随机函数谱理论的发展历史、研究现状及其物理应用。一类是定义在欧几里得空间上的齐次各向同性随机场,在有限维线性空间中取值。在连续介质物理学的应用中,当微观结构附着在所有介质点上时,这种场描述了均匀和各向同性连续介质的物理性质。域的值域是对称类的不动点集,其中两个紧李群通过正交表示作用。均匀介质的物质对称群在每一点上都是相同的,起着平凡的作用,而物理对称群则可能起着非平凡的作用。在各向同性随机介质中,第1阶(p。秩2)场的相关张量在物理对称群的作用下,按照上述表示(见第2条)进行变换。它的张量平方),使得场各向同性。另一类是紧李群的协集空间上齐次向量束的各向同性随机截面。在宇宙学的应用中,协集空间模型是天球,而随机截面模型是宇宙背景。宇宙学原理保证了截面是各向同性的。为了方便读者,必要的材料从多线性代数,表示理论,和微分几何在附录中进行了审查。∗通讯作者。瑞典Mälardalen大学数理学系,883号楼,721 23 Västerås。电子邮件:anatoliy.malyarenko@mdh.se。†伊利诺伊大学厄巴纳-香槟分校机械科学与工程系,凝聚态理论研究所和贝克曼研究所,厄巴纳,伊利诺伊州,61801-2906 USA。电子邮件:martinos@illinois.edu。[au:] [X] 4:2 11[au:] [au:] [au:] [au:] [au:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tensor- and spinor-valued random fields with applications to continuum physics and cosmology
In this paper, we review the history, current state-of-art, and physical applications of the spectral theory of two classes of random functions. One class consists of homogeneous and isotropic random fields defined on a Euclidean space and taking values in a real finite-dimensional linear space. In applications to continuum physics, such a field describes physical properties of a homogeneous and isotropic continuous medium in the situation, when a microstructure is attached to all medium points. The range of the field is the fixed point set of a symmetry class, where two compact Lie groups act by orthogonal representations. The material symmetry group of a homogeneous medium is the same at each point and acts trivially, while the group of physical symmetries may act nontrivially. In an isotropic random medium, the rank 1 (resp. rank 2) correlation tensors of the field transform under the action of the group of physical symmetries according to the above representation (resp. its tensor square), making the field isotropic. Another class consists of isotropic random cross-sections of homogeneous vector bundles over a coset space of a compact Lie group. In applications to cosmology, the coset space models the sky sphere, while the random cross-section models a cosmic background. The Cosmological Principle ensures that the cross-section is isotropic. For convenience of the reader, a necessary material from multilinear algebra, representation theory, and differential geometry is reviewed in Appendix. ∗Corresponding author. Division of Mathematics and Physics, Mälardalen University, Box 883, 721 23 Västerås, Sweden. E-mail: anatoliy.malyarenko@mdh.se. †Department of Mechanical Science & Engineering, also Institute for Condensed Matter Theory and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801-2906 USA. E-mail: martinos@illinois.edu. 1 ar X iv :2 11 2. 04 82 6v 1 [ m at h. PR ] 9 D ec 2 02 1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probability Surveys
Probability Surveys STATISTICS & PROBABILITY-
CiteScore
4.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信