{"title":"投影子的自同态环与Bernstein中心","authors":"A. Pyvovarov","doi":"10.5802/jtnb.1111","DOIUrl":null,"url":null,"abstract":"Let $F$ be a local non-archimedean field and $\\mathcal{O}_F$ its ring of integers. Let $\\Omega$ be a Bernstein component of the category of smooth representations of $GL_n(F)$, let $(J, \\lambda)$ be a Bushnell-Kutzko $\\Omega$-type, and let $\\mathfrak{Z}_{\\Omega}$ be the centre of the Bernstein component $\\Omega$. This paper contains two major results. Let $\\sigma$ be a direct summand of $\\mathrm{Ind}_J^{GL_n(\\mathcal{O}_F)} \\lambda$. We will begin by computing $\\mathrm{c\\text{--} Ind}_{GL_n(\\mathcal{O}_F)}^{GL_n(F)} \\sigma\\otimes_{\\mathfrak{Z}_{\\Omega}}\\kappa(\\mathfrak{m})$, where $\\kappa(\\mathfrak{m})$ is the residue field at maximal ideal $\\mathfrak{m}$ of $\\mathfrak{Z}_{\\Omega}$, and the maximal ideal $\\mathfrak{m}$ belongs to a Zariski-dense set in $\\mathrm{Spec}\\: \\mathfrak{Z}_{\\Omega}$. This result allows us to deduce that the endomorphism ring $\\mathrm{End}_{GL_n(F)}(\\mathrm{c\\text{--} Ind}_{GL_n(\\mathcal{O}_F)}^{GL_n(F)} \\sigma)$ is isomorphic to $\\mathfrak{Z}_{\\Omega}$, when $\\sigma$ appears with multiplicity one in $\\mathrm{Ind}_J^{GL_n(\\mathcal{O}_F)} \\lambda$.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2018-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The endomorphism ring of projectives and the Bernstein centre\",\"authors\":\"A. Pyvovarov\",\"doi\":\"10.5802/jtnb.1111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $F$ be a local non-archimedean field and $\\\\mathcal{O}_F$ its ring of integers. Let $\\\\Omega$ be a Bernstein component of the category of smooth representations of $GL_n(F)$, let $(J, \\\\lambda)$ be a Bushnell-Kutzko $\\\\Omega$-type, and let $\\\\mathfrak{Z}_{\\\\Omega}$ be the centre of the Bernstein component $\\\\Omega$. This paper contains two major results. Let $\\\\sigma$ be a direct summand of $\\\\mathrm{Ind}_J^{GL_n(\\\\mathcal{O}_F)} \\\\lambda$. We will begin by computing $\\\\mathrm{c\\\\text{--} Ind}_{GL_n(\\\\mathcal{O}_F)}^{GL_n(F)} \\\\sigma\\\\otimes_{\\\\mathfrak{Z}_{\\\\Omega}}\\\\kappa(\\\\mathfrak{m})$, where $\\\\kappa(\\\\mathfrak{m})$ is the residue field at maximal ideal $\\\\mathfrak{m}$ of $\\\\mathfrak{Z}_{\\\\Omega}$, and the maximal ideal $\\\\mathfrak{m}$ belongs to a Zariski-dense set in $\\\\mathrm{Spec}\\\\: \\\\mathfrak{Z}_{\\\\Omega}$. This result allows us to deduce that the endomorphism ring $\\\\mathrm{End}_{GL_n(F)}(\\\\mathrm{c\\\\text{--} Ind}_{GL_n(\\\\mathcal{O}_F)}^{GL_n(F)} \\\\sigma)$ is isomorphic to $\\\\mathfrak{Z}_{\\\\Omega}$, when $\\\\sigma$ appears with multiplicity one in $\\\\mathrm{Ind}_J^{GL_n(\\\\mathcal{O}_F)} \\\\lambda$.\",\"PeriodicalId\":48896,\"journal\":{\"name\":\"Journal De Theorie Des Nombres De Bordeaux\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Theorie Des Nombres De Bordeaux\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1111\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1111","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
The endomorphism ring of projectives and the Bernstein centre
Let $F$ be a local non-archimedean field and $\mathcal{O}_F$ its ring of integers. Let $\Omega$ be a Bernstein component of the category of smooth representations of $GL_n(F)$, let $(J, \lambda)$ be a Bushnell-Kutzko $\Omega$-type, and let $\mathfrak{Z}_{\Omega}$ be the centre of the Bernstein component $\Omega$. This paper contains two major results. Let $\sigma$ be a direct summand of $\mathrm{Ind}_J^{GL_n(\mathcal{O}_F)} \lambda$. We will begin by computing $\mathrm{c\text{--} Ind}_{GL_n(\mathcal{O}_F)}^{GL_n(F)} \sigma\otimes_{\mathfrak{Z}_{\Omega}}\kappa(\mathfrak{m})$, where $\kappa(\mathfrak{m})$ is the residue field at maximal ideal $\mathfrak{m}$ of $\mathfrak{Z}_{\Omega}$, and the maximal ideal $\mathfrak{m}$ belongs to a Zariski-dense set in $\mathrm{Spec}\: \mathfrak{Z}_{\Omega}$. This result allows us to deduce that the endomorphism ring $\mathrm{End}_{GL_n(F)}(\mathrm{c\text{--} Ind}_{GL_n(\mathcal{O}_F)}^{GL_n(F)} \sigma)$ is isomorphic to $\mathfrak{Z}_{\Omega}$, when $\sigma$ appears with multiplicity one in $\mathrm{Ind}_J^{GL_n(\mathcal{O}_F)} \lambda$.